
CA-IDMS®
Logical Record Facility

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to use this manual . vii

Chapter 1. Introduction to the Logical Record Facility 1-1
1.1 Introduction . 1-3
1.2 The DBA's role . 1-5
1.3 How the programmer uses LRF . 1-8

Chapter 2. How the Logical Record Facility Works 2-1
2.1 Overview of Logical Record Facility processing 2-3
2.2 Processing retrieval paths . 2-5
2.3 Processing update paths . 2-6
2.4 Communication between the program and LRF 2-7
2.5 Communication between LRF and the DBMS 2-8

Chapter 3. Preliminary Analysis and Design 3-1
3.1 Introduction . 3-3
3.2 Identifying data-access requirements . 3-4
3.3 Identifying data-security requirements . 3-6

3.3.1 Securing data at the subschema level 3-6
3.3.2 Securing data at the path-group level 3-6
3.3.3 Securing data at the path level . 3-7

3.4 Controlling the selection of logical-record occurrences 3-8
3.5 Determining subschema usage modes . 3-9
3.6 Controlling how LRF returns data . 3-10
3.7 Logical-record design suggestions . 3-11

3.7.1 Customizing a logical record . 3-11
3.7.2 Customizing a logical-record path . 3-11
3.7.3 Navigating the database efficiently 3-12
3.7.4 Defining path selectors carefully . 3-13

Chapter 4. Starting to Define the Subschema 4-1
4.1 Introduction . 4-3
4.2 Specifying a subschema usage mode . 4-4
4.3 Specifying a subschema currency option . 4-5
4.4 Including records, sets, and areas . 4-6
4.5 Defining logical records . 4-8

4.5.1 Step 1: Name the logical record . 4-8
4.5.2 Step 2: Name the logical-record elements 4-8
4.5.3 Step 3: Specify initialization options for program variable storage . . 4-10
4.5.4 Step 4: Document the logical record 4-11

Chapter 5. Defining Path Groups . 5-1
5.1 What is a path group . 5-3
5.2 Creating the definition . 5-4

Chapter 6. Specifying Path Selectors . 6-1
6.1 What is a path selector? . 6-3

Contents iii

6.2 Using the KEYWORD selector . 6-5
6.2.1 Examples . 6-5

6.3 Using the FIELDNAME-EQ selector . 6-6
6.3.1 Examples . 6-6

6.4 Using the FIELDNAME selector . 6-8
6.4.1 Examples . 6-8

6.5 Using the ELEMENT selector . 6-9
6.5.1 Examples . 6-9

6.6 Using a null SELECT clause . 6-10
6.6.1 Examples . 6-10

6.7 Using a SELECT clause that names an index 6-11
6.7.1 Example . 6-11

6.8 Using multiple selectors in a single SELECT clause 6-12
6.8.1 Examples . 6-12

6.9 Using multiple SELECT clauses for one path 6-13
6.9.1 Examples . 6-13

6.10 Determining path order . 6-14

Chapter 7. Coding Path Database Retrieval Commands 7-1
7.1 Introduction . 7-3
7.2 Using FINDs and OBTAINs . 7-6
7.3 Passing key values . 7-8

7.3.1 Specifying the key value as a literal . 7-8
7.3.2 Specifying the key value with the OF REQUEST clause 7-8
7.3.3 Examples . 7-9
7.3.4 Specifying the key value with the path OF LR clause 7-11
7.3.5 Examples . 7-11
7.3.6 Specifying the key value as an arithmetic expression 7-12
7.3.7 Example . 7-12

7.4 Retrieving CALC records . 7-14
7.5 Retrieving indexed records . 7-15

7.5.1 Using the FIND/OBTAIN EACH USING INDEX command 7-15
7.5.1.1 Associating an index with a SELECT clause 7-15
7.5.1.2 Specifying the sort key . 7-17
7.5.1.3 Passing sort key values . 7-18

7.5.2 Index processing considerations . 7-20
7.5.3 Using the FIND/OBTAIN WITHIN SET WHERE SORTKEY

command . 7-21
7.5.4 Using the FIND/OBTAIN WITHIN SET command 7-22

7.6 Retrieving records directly . 7-24

Chapter 8. Coding Path Database Update Commands 8-1
8.1 Introduction . 8-3
8.2 Storing database records . 8-4

8.2.1 When you don't have to establish currency 8-4
8.2.2 When you must establish currency . 8-6

8.3 Modifying database records . 8-8
8.3.1 Example . 8-8

8.4 Erasing database records . 8-10
8.4.1 Examples . 8-11

8.5 Connecting database records . 8-13

iv CA-IDMS Logical Record Facility

8.5.1 Examples . 8-13
8.6 Disconnecting database records . 8-16

8.6.1 Examples . 8-16

Chapter 9. Coding Path Database Control Commands 9-1
9.1 Introduction . 9-3
9.2 Evaluating empty-set conditions . 9-5

9.2.1 Example . 9-5
9.3 Evaluating set-membership status . 9-7

9.3.1 Example . 9-7
9.4 Locking a database record . 9-9

9.4.1 Example . 9-9

Chapter 10. Specifying Selection Criteria for Logical Records 10-1
10.1 Introduction . 10-3
10.2 Using a WHERE clause . 10-4

10.2.1 Coding a program WHERE clause 10-4
10.2.2 Coding a path WHERE clause . 10-7
10.2.3 Program and path WHERE clause interactions 10-9

10.3 Using the EVALUATE command . 10-13

Chapter 11. Controlling Path Execution . 11-1
11.1 Introduction . 11-3
11.2 Using the ON clause . 11-4
11.3 Executing the next path-DML command 11-7
11.4 Branching within a path . 11-9
11.5 Iterating a path . 11-11

11.5.1 Path iteration logic . 11-11
11.5.2 Triggering iteration from the program 11-12
11.5.3 Triggering iteration from the path 11-15

11.6 Returning control to the program . 11-18
11.6.1 Using system-defined path statuses 11-18
11.6.2 Using DBA-defined path statuses 11-19
11.6.3 Partial and complete logical records 11-19

Chapter 12. Manipulating Logical-Record Data 12-1
12.1 The COMPUTE command . 12-3

12.1.1 Examples . 12-3

Chapter 13. Using Role Names . 13-1
13.1 Role names . 13-3

13.1.1 Examples . 13-3

Chapter 14. Documenting the Subschema 14-1
14.1 Introduction . 14-3
14.2 Using the COMMENTS clause . 14-4
14.3 Running the LRDEFS report . 14-7
14.4 Running the LRPATH report . 14-12
14.5 Running the LRACT report . 14-14

Contents v

Chapter 15. Currency Considerations . 15-1
15.1 Introduction . 15-3
15.2 How LRF uses currency . 15-4
15.3 Choosing a currency option . 15-7

15.3.1 Example . 15-7
15.4 Currency considerations for role names 15-9

15.4.1 Example . 15-9

Chapter 16. Implementing Data Integrity Rules 16-1
16.1 Data integrity rules . 16-3

16.1.1 Examples . 16-3

Chapter 17. Using LRF with Other Facilities 17-1
17.1 Introduction . 17-3
17.2 Using LRF with CA-OLQ . 17-4
17.3 Using LRF with CA-ADS and CA-ADS/Batch 17-5
17.4 Using LRF with the CA-IDMS/DC Mapping Facility 17-6

Chapter 18. Debugging Subschema Code 18-1
18.1 Debugging and testing . 18-3

Chapter 19. LRF Programming Techniques 19-1
19.1 Introduction . 19-3
19.2 Using LRF documentation . 19-4

19.2.1 The LRDEFS report . 19-4
19.2.2 The LRPATH report . 19-8

19.3 Accessing logical records . 19-12
19.3.1 Retrieving logical records . 19-12
19.3.2 Modifying logical records . 19-13
19.3.3 Storing logical records . 19-15
19.3.4 Erasing logical records . 19-16
19.3.5 Using the WHERE clause . 19-18

19.3.5.1 Comparisons . 19-18
19.3.5.2 Keywords . 19-21
19.3.5.3 Coding techniques and path restrictions 19-21

19.3.6 Examples . 19-21
19.4 Testing for path status . 19-24

19.4.1 System-defined path statuses . 19-24
19.4.2 DBA-defined path statuses . 19-25
19.4.3 The ON clause . 19-25
19.4.4 Partial logical records . 19-26
19.4.5 Path status examples . 19-26

Appendix A. Sample Subschema EMPLR35 A-1

Appendix B. Sample Subschema EMPLR40 B-1

Appendix C. Sample Schema EMPSCHM . C-1

Index . X-1

vi CA-IDMS Logical Record Facility

How to use this manual

How to use this manual vii

What this manual is about

This manual discusses the following topics:

■ What the Logical Record Facility is and how it works

■ How to define a subschema that contains one or more logical records

■ What you should be aware of when you use the Logical Record Facility with
CA-IDMS and other facilities, such as CA-OLQ and CA-ADS

■ How the applications developer can use programming techniques to code
CA-IDMS programs using LRF

The appendixes show two sample logical record subschemas and also show the schema
definition of the sample employee database.

viii CA-IDMS Logical Record Facility

Who should use this manual

■ Database administrators (DBAs) who want to use LRF to control access to
corporate data.

■ Programmers who use the Logical Record Facility (LRF) to access the database

Programmers need read only Part I and Part IV of this document.

You should be familiar with CA-IDMS before reading this manual.

How to use this manual ix

 Special presentations

■ Sample path code and corresponding program requests are presented
throughout the manual. All program requests are given in the CA-ADS process
language.

■ Considerations that apply to subschema design, path-DML commands, and the
use of LRF with other facilities are provided where appropriate.

x CA-IDMS Logical Record Facility

 Related documentation

■ Before you read this manual, you should know the information in the following
CA-IDMS manuals:

– CA-IDMS Database Design Guide

– CA-IDMS Database Administration

■ For information that will help you as you use this manual, refer to:

– CA-IDMS Messages and Codes

– CA-IDMS Database Administration

– CA-IDMS Navigational DML Programming

■ For information on other CA-IDMS facilities that can be used with LRF, refer
to:

– CA-ADS Reference Guide

– CA-Culprit Reference Guide

– CA-OLQ Reference Guide

How to use this manual xi

xii CA-IDMS Logical Record Facility

Chapter 1. Introduction to the Logical Record Facility

1.1 Introduction . 1-3
1.2 The DBA's role . 1-5
1.3 How the programmer uses LRF . 1-8

Chapter 1. Introduction to the Logical Record Facility 1-1

1-2 CA-IDMS Logical Record Facility

1.1 Introduction

 1.1 Introduction

The Logical Record Facility (LRF) is a runtime facility that allows application
programmers to access CA-IDMS data without having to know the physical structure
of the database. Under LRF, programmers do not have to use database navigation
statements to access information. This is because the DBA predefines database access
logic that is typically coded by programmers.

Advantages: LRF offers many advantages for the corporate information system:

■ Enhances runtime efficiency. Database access through LRF often requires less
operating-system overhead than database access through navigational DML
commands. LRF can save overhead by reducing the number of program calls.

For batch programs running under the CA-IDMS central version (CV), LRF can
also minimize supervisor calls (SVCs). This results in faster and more efficient
database access.

■ Allows for increased data integrity. With LRF, the DBA can write all database
navigation instructions in the subschema. This helps to ensure that the logical
relationships of the data are preserved.

■ Allows for data security. The DBA can use LRF to:

– Restrict the records and fields viewed by the application program

– Restrict the database record occurrences viewed by the application program

– Restrict the operations that the application program can perform on records
and fields

■ Provides a flexible way to present data to different application programs.
With LRF, the DBA can use standard relational operations to:

– Select the record occurrences that the program can access

– Project the fields that appear in the program's view

– Join together information from two or more database records

– Compute new fields based on existing field values

These relational operations let the DBA establish relationships that do not exist in
the schema. They also let the DBA tailor logical views of data to individual
programs. No matter how the DBA chooses to construct a view, the application
program will see the data as a single table.

■ Simplifies a program's access to the database. LRF eliminates the need for
programmers to learn the database structure. By using LRF, a programmer does
not have to be familiar with database navigation techniques or keep track of
database currency.

■ Facilitates program maintenance. Because LRF insulates application programs
from the database, changes to the logical and physical database structures have
minimal impact on existing programs. For example, the DBA can change
selection criteria for a record, and the program need not be recompiled.

Chapter 1. Introduction to the Logical Record Facility 1-3

1.1 Introduction

■ Reduces programming redundancy. Because all database navigation instructions
are placed in a path, the programmer does not have to code these instructions.
Applications that require similar information can access the path rather than issue
the database navigation statements themselves.

To use LRF successfully, you must understand your role as the DBA in defining
logical-record subschemas. You must also understand how the applications
programmer will use the subschemas that you define.

1-4 CA-IDMS Logical Record Facility

1.2 The DBA's role

1.2 The DBA's role

As the database administrator (DBA), you control a program's access to the database
by defining a subschema that contains one or more logical records. A logical record
is a logical grouping of fields selected from one or more database records.

For example, you might want to use a logical record in the following business
situation. Suppose that application programs that process employee information
frequently require similar information. This information often comes from different
database records. Some programs, for example, require an employee's id, name, start
date, and status, as well as information about that employee's department and office.

Defining the logical record: By using LRF, you can create a logical record that
accesses all of the information required by an application program. For example, you
can define a logical record called EMP-INFO-LR, which contains selected fields from
the EMPLOYEE, DEPARTMENT, and OFFICE records.

Once the EMP-INFO-LR logical record is defined, a program can issue the following
logical-record request:

OBTAIN FIRST EMP-INFO-LR

WHERE EMP-ID-�415 EQ '��15'.

As you can see from the diagram below, EMP-INFO-LR presents a view of three
different database records to the application program.

Chapter 1. Introduction to the Logical Record Facility 1-5

1.2 The DBA's role

The following example compares two program requests for employee information:
program A requests information through the logical record facility; program B requests
information by using navigational DML statements.

Defining paths and path groups: Once you have defined the EMP-INFO-LR
logical record, you can define paths and path groups for the logical record. A path is
a collection of Data Manipulation Language statements (DML statements) that are
designed to process program requests for database access. Paths are grouped into path
groups, according to the DML verb used to access the path.

The following example shows how you can associate paths with the EMP-INFO-LR
logical record. The EMP-INFO-LR logical record is associated with paths that are
grouped into a single path group. This logical record is defined in the EMPLR35
subschema.

1-6 CA-IDMS Logical Record Facility

1.2 The DBA's role

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 .

 .

 .

ADD

LOGICAL RECORD NAME IS EMP-INFO-LR ─┐

 ELEMENTS ARE │

 EMPLOYEE │

 DEPARTMENT │ Logical

 OFFICE │ record

 COMMENTS │

 '��� │

'THE EMP-INFO-LR RECORD ACCESS INFORMATION FROM THE' │

'EMPLOYEE DATABASE RECORD AND ALSO ACCESS INFORMATION' │

'FROM THE ASSOCIATED DEPARTMENT AND OFFICE RECORDS.' │

 . ─┘

 .

 .

ADD

PATH-GROUP NAME IS OBTAIN EMP-INFO-LR ─┐

 │

SELECT FOR KEYWORD ON-LEAVE ─┐ │

OBTAIN EACH EMPLOYEE WITHIN EMP-NAME-NDX │ │

WHERE STATUS-�415 EQ '�4' │ │

IF DEPT-EMPLOYEE MEMBER │ Path │

ON 16�1 RETURN NO-DEPT │ │

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE ─┘ │

│ Path group

SELECT FOR FIELDNAME-EQ EMP-ID-�415 ─┐ │

 . │ Path │

 . │ │

 . ─┘ │

 │

SELECT FOR FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT ─┐ │

. │ Path │

 . │ │

 . ─┘ ─┘

For more information on defining logical records, path groups, and paths, refer to
Chapter 4, “Starting to Define the Subschema” on page 4-1, Chapter 5, “Defining
Path Groups” on page 5-1, and Chapter 6, “Specifying Path Selectors” on page 6-1.

Chapter 1. Introduction to the Logical Record Facility 1-7

1.2 The DBA's role

1.3 How the programmer uses LRF

Logical-record requests: Application programmers request services from LRF by
issuing special logical-record requests. Each of these requests consists of a DML verb
and the name of the desired logical record:

■ OBTAIN logical-record should be used to request that a logical record be
retrieved.

■ MODIFY logical-record should be used to request that a logical record be
modified.

■ STORE logical-record should be used to request that a logical record be stored.

■ ERASE logical-record should be used to request that a logical record be erased.

When a programmer issues a logical-record request, it maps to a path defined in the
subschema. The outcome of the request depends on how the path is coded. For
example, a MODIFY logical-record request may or may not cause a logical record to
be changed.

Request options: Programmers can include the following options in a
logical-record request:

■ Specific selection criteria, in the form of a program WHERE clause. This clause
requests that logical-record occurrences be selected according to specified boolean
selection criteria.

■ A request to check the outcome of LRF processing, in the form of an ON
clause. This clause specifies an action to be taken based on a status returned from
LRF.

For more information on accessing data through LRF, see Chapter 19, “LRF
Programming Techniques” on page 19-1.

1-8 CA-IDMS Logical Record Facility

Chapter 2. How the Logical Record Facility Works

2.1 Overview of Logical Record Facility processing 2-3
2.2 Processing retrieval paths . 2-5
2.3 Processing update paths . 2-6
2.4 Communication between the program and LRF 2-7
2.5 Communication between LRF and the DBMS 2-8

Chapter 2. How the Logical Record Facility Works 2-1

2-2 CA-IDMS Logical Record Facility

2.1 Overview of Logical Record Facility processing

2.1 Overview of Logical Record Facility processing

A program request for a logical record is processed in the following manner:

1. The application program requests the services of LRF by issuing a
logical-record request. The request includes a DML verb (OBTAIN, MODIFY,
STORE, or ERASE) and the name of the desired logical record. It can also
include a WHERE clause that contains selection criteria for the logical record and
data to be used for updating the logical record. All information associated with
the logical-record request is sent through the program's logical-record request
control (LRC) block.

2. LRF interprets the program request by following these steps:

a. Locates the appropriate logical-record definition in the subschema.

b. Locates the appropriate logical-record path. LRF uses the logical-record
name and DML verb to match to the path group, and the contents of the
program request's WHERE clause (if one exists) to map to the path.

c. Determines where to enter the path. LRF always enters the beginning of
the path unless the path is being iterated. For a discussion of path iteration,
refer to Chapter 11, “Controlling Path Execution” on page 11-1.

3. LRF issues a database access request to the DBMS, based on the current
path-DML statement.

4. The DBMS executes the path-DML statement.

5. The DBMS returns control to LRF. Steps 3, 4, and 5 are repeated for each
path-DML statement until all appropriate statements have been executed.

6. LRF returns path-status information and data to the application program. The
program regains control at the ON clause (if present) or at the statement that
immediately follows the logical-record request.

The following drawing shows how a logical-record request is processed. LRF
processes a program's logical-record request according to the steps outlined above.
Steps 3, 4, and 5 are repeated until all appropriate path-DML statements in the
program have been executed.

Chapter 2. How the Logical Record Facility Works 2-3

2.1 Overview of Logical Record Facility processing

Types of paths: There are two types of paths: retrieval and update. These paths
are discussed below, followed by discussions of how communication occurs between
the application program and LRF, and between LRF and the DBMS.

2-4 CA-IDMS Logical Record Facility

2.2 Processing retrieval paths

2.2 Processing retrieval paths

A retrieval path services program requests to OBTAIN a logical record. Typically,
the path-DML commands in a retrieval path retrieve each database record that
participates in the requested logical record. For example, a retrieval path for the
EMP-INFO-LR logical record (described in Chapter 1, “Introduction to the Logical
Record Facility” on page 1-1) would probably contain path-DML commands that
retrieve the EMPLOYEE, DEPARTMENT, and OFFICE database records.

When LRF processes a retrieval request, the way it returns the data depends on the
environment:

■ For batch programs running under the CA-IDMS central version , LRF
returns the entire logical record in one packet of data. The packet is created when
the program issues a bind request. It overlays program variable storage when all
path-DML commands have been executed. By returning all of the logical-record
components in a single packet, LRF reduces the number of SVC calls required for
program/database communication.

■ For online programs running under central version and batch programs
running in local mode, LRF returns data directly to program variable storage, one
record at a time.

The transfer of data to program variable storage is transparent to the application
program. Regardless of the type of processing, the logical record is available to the
program when all path-DML commands have been executed successfully and all
selection criteria have been satisfied.

Chapter 2. How the Logical Record Facility Works 2-5

2.3 Processing update paths

2.3 Processing update paths

An update path services program requests to MODIFY, STORE, or ERASE a logical
record. To MODIFY or STORE a logical record, data must be made available to the
DBMS. LRF passes the required data from program variable storage to the DBMS
when a request is issued. The data present in program variable storage can be placed
there either by the program or by the execution of a previous path-DML command.

You can code an update path to direct LRF to update some or all of the database
records that participate in the logical record. As the DBA, you determine what
database records, if any, will be affected by a program's logical-record request.

For example, suppose a program needs to modify the STATUS-0415 field in the
EMP-INFO-LR logical record. You can code a path that modifies the EMPLOYEE
database record (which contains this field) but does not affect the DEPARTMENT or
OFFICE records.

2-6 CA-IDMS Logical Record Facility

2.4 Communication between the program and LRF

2.4 Communication between the program and LRF

LRC block: Communication between the application program and LRF occurs
through the subschema control block and the logical-record request control (LRC)
block. When a program issues a request for a logical record, the LRC block passes
the logical-record verb, logical-record name, and WHERE clause selection criteria to
LRF. Once the request is processed, the LRC block passes path-status information
back to the program.

SUBSCHEMA-LR-CTRL: The data description of the LRC block is identified as
SUBSCHEMA-LR-CTRL in the application program. This description is copied into
the program when it is compiled.

Examining fields: After every call to LRF, the program should examine the
LR-STATUS field of the LRC block. If the value returned is LR-ERROR, the
program should examine the ERROR-STATUS field of the IDMS (or IDMS-DC)
communications block, as described below.

Chapter 2. How the Logical Record Facility Works 2-7

2.5 Communication between LRF and the DBMS

2.5 Communication between LRF and the DBMS

Communication between LRF and the DBMS occurs through either the IDMS
communications block or the IDMS-DC communications block:

■ The IDMS communications block is used when the operating mode is either
BATCH or BATCH-AUTOSTATUS.

■ The IDMS-DC communications block is used when the operating mode is either
IDMS-DC or DC-BATCH.

SUBSCHEMA-CTRL: The data description of the IDMS or IDMS-DC
communications block is identified as SUBSCHEMA-CTRL in the application
program. SUBSCHEMA-CTRL is copied into the program when it is compiled. The
program can use the ERROR-STATUS field of SUBSCHEMA-CTRL to check the
outcome of the last path-DML statement executed. This field should only be used if
the LR-STATUS field of the LRC block returns LR-ERROR.

�� For more information on the IDMS and IDMS-DC communications blocks, refer to
the CA-IDMS Navigational DML Programming.

2-8 CA-IDMS Logical Record Facility

Chapter 3. Preliminary Analysis and Design

3.1 Introduction . 3-3
3.2 Identifying data-access requirements . 3-4
3.3 Identifying data-security requirements . 3-6

3.3.1 Securing data at the subschema level 3-6
3.3.2 Securing data at the path-group level 3-6
3.3.3 Securing data at the path level . 3-7

3.4 Controlling the selection of logical-record occurrences 3-8
3.5 Determining subschema usage modes . 3-9
3.6 Controlling how LRF returns data . 3-10
3.7 Logical-record design suggestions . 3-11

3.7.1 Customizing a logical record . 3-11
3.7.2 Customizing a logical-record path . 3-11
3.7.3 Navigating the database efficiently 3-12
3.7.4 Defining path selectors carefully . 3-13

Chapter 3. Preliminary Analysis and Design 3-1

3-2 CA-IDMS Logical Record Facility

3.1 Introduction

 3.1 Introduction

The key to using LRF successfully is to analyze the information needs of your
organization and to design logical-record subschemas that meet those needs.

Considerations: Before you begin to define a subschema, you should consider:

■ The data requirements of the application programs that will use the subschema

■ How the data should be secured

■ Whether you want the selection of logical-record occurrences to occur in the
program or the path

■ Whether you want the subschema to be used for LRF processing only, or for both
LRF and navigational DML processing

■ Whether you want LRF to return complete logical records only, or both partial and
complete logical records

Each of these considerations is described below, followed by a list of specific
logical-record design suggestions.

Chapter 3. Preliminary Analysis and Design 3-3

3.2 Identifying data-access requirements

3.2 Identifying data-access requirements

Steps to determine data requirements: Follow these steps to determine the data
requirements for programs that will use the subschema:

1. Identify all anticipated user requests. You should determine exactly what data
the users require for data processing.

2. Analyze each anticipated request to determine the required data elements. Then
identify the database records that contain these data elements.

3. Group together all requests that require the same (or almost the same) data
elements. Each group of requests will be the basis of one logical record.

4. Analyze each group of requests identified in step 3 to determine required
selection criteria. Requests that use the same selection criteria can be serviced by
a single logical-record path.

Establishing priorities: You should use your discretion to determine which
requests are most important. Priorities are typically defined by the users and
determined by the frequency and type of request.

Example: To illustrate how to identify data-access requirements, let's look at an
example from the sample non-SQL defined employee database shown in the following
diagram.

Note: Most of the examples in this document are based on the sample non-SQL
defined employee database.

Some users frequently require access to the following data elements:

FIELD NAME DESCRIPTION

EMP-ID-�415 employee id

EMP-NAME-�415 employee name

START-DATE-�415 employee start date

STATUS-�415 employee status

DEPT-ID-�44� department id

DEPT-NAME-�44� department name

OFFICE-CODE-�45� office code

Because these data elements are frequently accessed together, it is efficient to include
them in a single logical record (the EMP-INFO-LR logical record).

Suppose that users want to select this data according to the following criteria:

■ For a specific employee, by employee id

■ For a specific employee, by employee last name

■ For all employees who work in a specific department

■ For all employees who work in a specific office

■ For all employees who are on leave

3-4 CA-IDMS Logical Record Facility

3.2 Identifying data-access requirements

To service these requests, you could define five separate paths within the
EMP-INFO-LR logical record. Each path would service one type of data selection.
For information on defining paths, refer to Chapter 5, “Defining Path Groups” on
page 5-1.

Chapter 3. Preliminary Analysis and Design 3-5

3.3 Identifying data-security requirements

3.3 Identifying data-security requirements

Once you have identified and analyzed the data-access requirements of your
organization, you should decide how the data should be secured. Using logical
records, you can secure data at three levels:

■ The subschema level

■ The path-group level

■ The path level

3.3.1 Securing data at the subschema level

A subschema determines which database records and elements are available to the
application programs that use the subschema. When you define a subschema, you can
include only those database records and elements that you want the programs to
access.

For example, suppose that two groups of application programs have similar data
requirements for employee information. One group needs access to the employee
salary amount (SALARY-AMOUNT-0420), while the other group is not authorized to
access this field.

To secure this salary information from unauthorized users, you could:

■ Define a subschema for each of the two groups. The first subschema would
include the SALARY-AMOUNT-0420 field on an ELEMENTS ARE clause; the
second subschema would not include this field.

■ Register application programs for the appropriate subschema by using the
Integrated Data Dictionary (IDD). Program registration is discussed in the
CA-IDMS IDD DDDL Reference Guide.

LR usage mode: Another way you can secure data at the subschema level is by
defining a subschema usage mode of LR. This usage mode allows programs to access
logical records only; the programs cannot access database records through navigational
DML calls. Subschema usage modes are described later in this chapter.

Other forms of subschema-level security include access restrictions for users, areas,
sets, and records. This type of security is described in CA-IDMS Database
Administration.

3.3.2 Securing data at the path-group level

By limiting the path groups defined in a subschema, you can control the operations a
program can perform on a logical record. If you define a logical record that has an
OBTAIN path group only, application programs will be able to retrieve the logical
record but not update it.

3-6 CA-IDMS Logical Record Facility

3.3 Identifying data-security requirements

Similarly, you can allow a program to retrieve a logical record, add a new logical
record, and modify an existing logical record by including OBTAIN, STORE, and
MODIFY path groups in the logical record definition. The program, however, will not
be able to erase the logical record.

Path groups are discussed in Chapter 5, “Defining Path Groups” on page 5-1.

3.3.3 Securing data at the path level

Selection criteria: You can implement occurrence-level security at the path level
by specifying selection criteria within the path. Path selection criteria are evaluated
before the selection criteria specified within the program WHERE clause. Therefore,
you can use path selection criteria to control the programmer's awareness of the actual
data within the database.

For example, suppose a group of application programs require salary information for
nonexecutive employees. You can code path selection criteria that request
logical-record occurrences where the contents of the EMP-SALARY-0440 field is less
than $100,000. The programs will only be able to view those logical records that meet
the path selection criteria. Furthermore, the programs will not know that the selection
criteria have been applied.

The path can also space or zero out sensitive data before the logical record is returned
to the program.

Path selection criteria are discussed in more detail below.

Chapter 3. Preliminary Analysis and Design 3-7

3.4 Controlling the selection of logical-record occurrences

3.4 Controlling the selection of logical-record occurrences

Determining control: Before you code a logical-record subschema, you should
determine how much control you want to maintain over the selection of logical-record
occurrences. The amount of control you maintain depends on whether the selection
criteria are specified in the program or in the path:

■ The programmer controls the selection of logical-record occurrences by coding
selection criteria in the program's WHERE clause.

■ You control the selection of logical-record occurrences by coding selection criteria
in the path.

Logical-record selection criteria: Logical-record selection criteria can be coded
in the program, in the path, or in both the program and the path. You should be aware
that path selection criteria are evaluated before program selection criteria. Therefore,
programs never see data that doesn't meet path selection criteria.

Advantages: Selecting logical-record occurrences in the path rather than the
program provides the following advantages:

■ You, rather than the programmer, have control over the logical-record
occurrences returned to satisfy a program request. This helps to minimize
programmer error because it ensures that all programs that require the same
logical-record occurrences will use the same selection criteria. It also provides
data security, since programmers need not be aware of the selection criteria
specified in the path.

■ You can change selection criteria defined in the path without requiring that
programs be modified and recompiled. This is especially useful for selection
criteria that change often.

For example, the MINIMUM-SALARY and MAXIMUM-SALARY fields of the
JOB record are typically subject to frequent change. Any selection of JOB
records based on salary levels should be placed in the path. That way, when the
salary levels change, application programs do not have to be recompiled.

■ There is less data transfer activity involved. A record occurrence that doesn't
meet path selection criteria is not moved from the DBMS buffers to program
variable storage.

3-8 CA-IDMS Logical Record Facility

3.5 Determining subschema usage modes

3.5 Determining subschema usage modes

Before you code a logical-record subschema, you should decide what usage mode you
want the subschema to have. The usage mode determines the types of requests that a
program using the subschema can issue:

LR usage mode: A usage mode of LR specifies that the program can issue
logical-record requests only. Programs that access logical records only do not have to
perform database navigation or be aware of currency. Therefore, for most subschemas,
you should specify a usage mode of LR.

When defining logical-record components for these subschemas, make sure you
include all of the database records that are required by the programs. Because the
programs cannot retrieve database records directly, the required data must be part of
the logical record.

MIXED usage mode: A usage mode of MIXED specifies that the program can
issue requests for both logical records and database records. Programs that use the
subschema can access database records through logical records and they can use
navigational DML commands to access database records directly.

These programs are also more dependent on the database structure. Therefore, the
programmer must be aware of database currencies.

Note: A usage of MIXED should be specified only if it is absolutely necessary for
programs using the subschema to issue navigational DML commands.

Chapter 3. Preliminary Analysis and Design 3-9

3.6 Controlling how LRF returns data

3.6 Controlling how LRF returns data

Before you code a logical-record subschema, you need to decide how you want LRF
to return data to the program. Whenever possible, LRF tries to construct a complete
logical record. This means that LRF will return data for all components of the logical
record, as specified by the path.

LR-NOT-FOUND: If LRF cannot construct a complete logical record, it
automatically returns a path status of LR-NOT-FOUND. It also returns any data it
was able to retrieve.

Accessing partial data: If you want a program to have access to the partial data,
you should code your own path statuses to alert the program that a partial logical
record is being returned. You should also initialize the unused portions of the logical
record to ensure that the returned data is accurate.

For more information on complete and partial logical records, refer to Chapter 11,
“Controlling Path Execution” on page 11-1.

3-10 CA-IDMS Logical Record Facility

3.7 Logical-record design suggestions

3.7 Logical-record design suggestions

There are a number of steps you can take to develop a good logical-record design:

■ Customize each logical record to service one category of information.

■ Customize each logical-record path to service one type of program request.

■ Provide efficient database navigation in the path.

■ Define path selectors carefully.

3.7.1 Customizing a logical record

Each logical record you construct should contain only one category of information.
For example, the sample EMP-INFO-LR logical record is designed to service program
requests for employee information. All programs that require the same same (or
similar) employee information will request this logical record.

Too global: A logical record that is too global often processes and returns data
elements that are not required by the program. This can result in:

■ Wasted space in program variable storage

■ Unnecessary resources being allocated to maintain buffer areas for each logical
record component

■ An increased load module size for the subschema

■ An excessive number of unrelated paths in the subschema

Too sparse: A logical record that is too sparse may return fewer data elements
than a program requires. One program execution must then access many logical
records, resulting in:

■ More complex LRF design and coding activity

■ Increased program-LRF communication, with a corresponding increase in
operating system overhead

■ Increased programmer awareness of currency

■ A reduction in data structure independence

3.7.2 Customizing a logical-record path

Each logical-record path you define should service only one type of program request.
In general, the primary purpose of an application program is to perform either retrieval
or update activity. Thus, the subschemas you code should contain the retrieval or
update functions needed to perform the required activity. (A subschema designed for
update activity will usually contain both retrieval and update functions.)

You should always use a single path to retrieve an entire table. Whenever possible,
you should also use the same program WHERE clause to access this path.

Chapter 3. Preliminary Analysis and Design 3-11

3.7 Logical-record design suggestions

If you do not use the same program WHERE clause, you force a program to switch
paths to get the information it requires. This can cause a 2040 error, which occurs
when the WHERE clauses in successive OBTAIN statements direct LRF to different
paths.

3.7.3 Navigating the database efficiently

Considerations: When you code logical-record paths, you should navigate the
database in the most efficient manner possible. Efficient database navigation depends
on the following factors.

Entering the database: You can enter the database by using the following access
strategies:

■ CALC, based on a record's CALC key value

■ DIRECT, based on a record's database key value

■ INDEXED, based on a system-owned index or an indexed set

■ AREA, based on a record's physical location in a database area

Your choice of an access strategy will depend on two factors:

■ The information needs of the program

■ The structure of the database

In general, CALC, DIRECT, and INDEXED entries are more efficient than AREA
entry.

Progressing through the database: Once the database is entered, the accessed
record becomes current of run unit, area, record type, and all sets in which it
participates as an owner or member.

A good strategy uses the interconnections that already exist in the database to
minimize the total number of database records accessed.

Using FIND or OBTAIN: FIND locates a record occurrence in the database;
OBTAIN locates a record occurrence in the database and moves that occurrence to
program variable storage.

Using FINDs instead of OBTAINs makes LRF processing more efficient, but
sometimes you must OBTAIN database records. For a discussion of when to use
OBTAIN statements, refer to Chapter 5, “Defining Path Groups” on page 5-1.

Currency options: The DBMS refers to and updates currency while processing
path-DML statements, just as it does while processing program-DML commands. LRF
automatically keeps track of currency between program requests. As a result,
programmers do not have to know the currency of records, sets, or areas when they
rerequest a logical record.

3-12 CA-IDMS Logical Record Facility

3.7 Logical-record design suggestions

You can specify the following currency options in the ADD SUBSCHEMA DDL
statement:

■ LR CURRENCY RESET (default) causes LRF to reobtain all of the
logical-record elements it placed in program variable storage during the previous
execution of the path. This occurs each time LRF reenters an OBTAIN path.

LR CURRENCY RESET also causes LRF to restore the currency tables in the
DBMS to what they were when control was returned to the program.

■ LR CURRENCY NO RESET causes LRF to restore currency only for the last
iterated verb. LRF does not reobtain any logical-record elements.

In most cases, you will want to specify a currency option of LR CURRENCY NO
RESET. This option is more efficient than LR CURRENCY RESET because it saves
processing time and may also save I/O.

You should only allow LR currency to default to RESET when:

■ The program will be modifying the logical-record area of program variable storage
during path iteration

■ Either the program or another path will be modifying a logical-record component
in the database (by means of a MODIFY or ERASE command), and you want
LRF to react to the changes

■ You are using subschemas defined for the exclusive use of CA-OLQ

For a detailed discussion of LRF currency considerations, refer to Chapter 15,
“Currency Considerations” on page 15-1. For a discussion of using LRF with
CA-OLQ, refer to Chapter 17, “Using LRF with Other Facilities” on page 17-1.

3.7.4 Defining path selectors carefully

Every path in a path group must begin with at least one SELECT clause. This clause
marks the beginning of a path definition. Selectors in the clause are used to match a
program request to the appropriate path.

Considerations: When you define path selectors, you should keep these guidelines
in mind:

■ Some path selectors are better than others for certain types of database
access:

– Use the FIELDNAME-EQ selector for CALC or direct entry. This selector
ensures that the path will be selected if the program references the key field
in the appropriate way.

– Use the FIELDNAME selector to allow for nonkey retrieval or for generic
key retrieval through an index.

– Use ELEMENT or null selectors if you want to do an area sweep.

■ KEYWORD selectors are very versatile. You can use them to:

Chapter 3. Preliminary Analysis and Design 3-13

3.7 Logical-record design suggestions

– Guarantee a match from the program to a given path.

– Reduce the need for programmers to code detailed comparisons. For
example, you can put selection criteria in the path and then use the keyword
to map to the path.

You can also combine KEYWORD selectors with other types of selectors.

■ LRF evaluates SELECT clauses in the order in which they are coded; it
services program requests with the first matching path. You should, therefore,
always sequence SELECT clauses in order, from most specific to least specific.

For a detailed discussion of path selectors, refer to Chapter 5, “Defining Path Groups”
on page 5-1.

3-14 CA-IDMS Logical Record Facility

Chapter 4. Starting to Define the Subschema

4.1 Introduction . 4-3
4.2 Specifying a subschema usage mode . 4-4
4.3 Specifying a subschema currency option . 4-5
4.4 Including records, sets, and areas . 4-6
4.5 Defining logical records . 4-8

4.5.1 Step 1: Name the logical record . 4-8
4.5.2 Step 2: Name the logical-record elements 4-8
4.5.3 Step 3: Specify initialization options for program variable storage . . 4-10
4.5.4 Step 4: Document the logical record 4-11

Chapter 4. Starting to Define the Subschema 4-1

4-2 CA-IDMS Logical Record Facility

4.1 Introduction

 4.1 Introduction

Once you have analyzed your organization's information needs and thought about how
you will design your logical records, you are ready to define a subschema.

This chapter describes how to start defining a subschema that includes one or more
logical records. In this chapter, you will:

■ Specify a usage mode for the subschema

■ Specify a currency option for the subschema

■ Include the necessary records, sets, and areas

■ Define the logical records you want to include in the subschema

As you read this chapter, you should refer to the CA-IDMS Database Administration
for a description of subschema compiler syntax.

Chapter 4. Starting to Define the Subschema 4-3

4.2 Specifying a subschema usage mode

4.2 Specifying a subschema usage mode

One of the first steps in defining a logical-record subschema is to specify a subschema
usage mode. For a subschema that contains logical records, the usage mode can be
either LR or MIXED.

LR usage mode: A usage mode of LR allows programs using the subschema to
issue requests for logical records (through LRF DML statements). Database records
are accessed as components of logical records.

Additionally, these programs can issue the following commands, if appropriate:

■ ACCEPT DATABASE STATISTICS

 ■ BIND PROCEDURE

 ■ COMMIT

■ RETURN (for indexed sets only)

 ■ ROLLBACK

MIXED usage mode: A usage mode of MIXED (the default) allows programs
using the subschema to issue LRF DML statements and navigational DML statements.
These programs can access logical records and single database records.

Specifying the usage mode: You specify a subschema usage mode by using the
USAGE IS clause of the ADD SUBSCHEMA Data Description Language (DDL)
statement. The following example shows how to specify a subschema usage mode for
the sample EMPLR35 subschema.

The EMPLR35 subschema has a usage mode of LR. Programs that use this
subschema can issue requests for logical records only.

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

DESCRIPTION IS 'SAMPLE SUBSCHEMA FOR LRF MANUAL'

PUBLIC ACCESS IS ALLOWED FOR ALL

USAGE IS LR 	--------

 .

 .

 .

4-4 CA-IDMS Logical Record Facility

4.3 Specifying a subschema currency option

4.3 Specifying a subschema currency option

When a subschema contains logical records, you can specify whether LRF is to reset
currency and restore the logical-record area of program variable storage. You specify
these currency options in the LR CURRENCY clause of the ADD SUBSCHEMA
DDL statement.

NO RESET currency option: NO RESET directs LRF to restore currency for the
last path-DML statement. LRF will restore currency before it reexecutes an OBTAIN
path.

RESET currency option: RESET (default) directs LRF to reset currency and to
restore the logical record's program variable storage area before it reexecutes an
OBTAIN path.

The following example shows how to specify a currency option for the EMPLR35
subschema. The EMPLR35 subschema has a currency option of NO RESET.

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

DESCRIPTION IS 'SAMPLE SUBSCHEMA FOR LRF MANUAL'

PUBLIC ACCESS IS ALLOWED FOR ALL

USAGE IS LR

LR CURRENCY NO RESET �-----
 .

 .

 .

For more information on subschema currency options, refer to Chapter 15, “Currency
Considerations” on page 15-1.

Chapter 4. Starting to Define the Subschema 4-5

4.4 Including records, sets, and areas

4.4 Including records, sets, and areas

You must include the following database components in a subschema that contains
logical records:

■ All database records that contain data to be used in application processing

■ Any other database record referenced in a path

■ All sets (including indexed sets) referenced in a path

■ All areas that contain the specified database records and sets

■ All sets and areas that will be affected by update activity

You include database components in a subschema by using the ADD RECORD, ADD
SET, and ADD AREA DDL statements.

Restricting the subschema's view: You should restrict the subschema's view of
any database records included in your subschema definition. You can restrict this
view in two ways:

■ By using a VIEW ID clause to copy a predefined view of the record description
into the subschema

■ By using an ELEMENTS ARE clause to identify the fields to be included in the
record description

If you don't use one of these clauses, the record description will include all fields
contained in the database record. This could:

■ Increase the size of the subschema load module, which can result in wasted space
in program variable storage.

■ Make the programs that use the subschema more vulnerable to changes in the
database record definition. For example, if new fields are added to the record, the
new record description gets copied into the logical-record area of program variable
storage. Programs that use the subschema then need to be recompiled, whether or
not they access the new fields.

The following example shows how to include database components for the sample
EMPLR35 subschema.

4-6 CA-IDMS Logical Record Facility

4.4 Including records, sets, and areas

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 .

 .

 .

ADD

AREA NAME IS EMP-DEMO-REGION

 .

ADD

AREA NAME IS ORG-DEMO-REGION

 .

ADD

RECORD NAME IS EMPLOYEE

ELEMENTS ARE EMP-ID-�415 EMP-NAME-�415 START-DATE-�415

 STATUS-�415

 .

ADD

RECORD NAME IS DEPARTMENT

ELEMENTS ARE DEPT-ID-�41� DEPT-NAME-�41�

 .

ADD

RECORD NAME IS OFFICE

ELEMENTS ARE OFFICE-CODE-�45�

 .

ADD

SET NAME IS EMP-NAME-NDX

 .

ADD

SET NAME IS DEPT-EMPLOYEE

 .

ADD

SET NAME IS OFFICE-EMPLOYEE

 .

 .

 .

Chapter 4. Starting to Define the Subschema 4-7

4.5 Defining logical records

4.5 Defining logical records

Now you are ready to define the logical records that you want to include in the
subschema. You define a logical record by using the ADD LOGICAL RECORD DDL
statement. LRF uses the record layout described by this statement to reserve an area
in program variable storage.

Steps in defining a logical record: To define a logical record, you should:

1. Name the logical record

2. Name the elements of the logical record

3. Specify whether the logical-record description in program variable storage will be
reinitialized when certain path statuses are returned

4. Document the logical record

4.5.1 Step 1: Name the logical record

The logical record name must be from 1 through 16 characters and must be unique for
the current subschema; it can't duplicate the name of another logical record or database
record described in the same subschema.

You name a logical record by using the NAME IS clause of the ADD LOGICAL
RECORD DDL statement. The following example shows how to name the
EMP-INFO-LR logical record.

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 .

 .

 .

ADD

LOGICAL RECORD NAME IS EMP-INFO-LR

 .

 .

 .

4.5.2 Step 2: Name the logical-record elements

You identify the records that participate in the logical record by using the ELEMENTS
clause of the ADD LOGICAL RECORD DDL statement. Program variable storage
will contain a description of each record you name as a logical-record element.

Note: Fields that are excluded from the subschema view will not be included in a
logical-record description.

Records to include: You should include the following records as logical-record
elements:

■ All database records used to construct the logical record.

■ Any other database record that contains fields used in one of the following ways:

4-8 CA-IDMS Logical Record Facility

4.5 Defining logical records

– To pass data between the program and the path

– As operands in EVALUATE and COMPUTE operations

■ Any IDD-defined work record that contains fields used in one of the following
ways:

– To pass data between the program and the path

– As operands in EVALUATE and COMPUTE operations

Be sure you indicate which version of the work record you want to include in the
logical record.

Note: Do not code an ADD RECORD statement for any IDD-defined work
record included in your logical-record description.

Using role names: To include an element that occurs more than once in a single
logical record, you can use role names. Role names must be included in the
ELEMENTS clause of the ADD LOGICAL RECORD statement. Once a role name
has been assigned, both the path and the program must refer to the role rather than to
the associated record element. For complete information on the use of roles, refer to
Chapter 13, “Using Role Names” on page 13-1.

Naming record elements for EMP-INFO-LR: The following example shows how
to name the record elements for the EMP-INFO-LR logical record.

Note: All logical-record components are double-word aligned when they appear in
program variable storage.

The EMP-INFO-LR logical record includes the EMPLOYEE, DEPARTMENT,
OFFICE, and PATHREC records.

 ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 .

 .

 .

 ADD

LOGICAL RECORD NAME IS EMP-INFO-LR

 ELEMENTS ARE

 EMPLOYEE

 DEPARTMENT

 OFFICE

PATHREC VERSION 1 �------ IDD-defined work record
 .

 .

 .

The following example shows the description of the EMP-INFO-LR logical record that
will appear in program variable storage. The logical-record description for
EMP-INFO-LR includes selected fields from the EMPLOYEE, DEPARTMENT, and
OFFICE database records, and all fields from the PATHREC work record.

Chapter 4. Starting to Define the Subschema 4-9

4.5 Defining logical records

�1 EMP-INFO-LR.

 �2 EMPLOYEE.

 �3 EMP-ID-�415 PIC 9(4).

 �3 EMP-NAME-�415

 �4 EMP-FIRST-NAME-�415 PIC X(1�).

 �4 EMP-LAST-NAME-�415 PIC X(15).

 �3 START-DATE-�415

 �4 START-YEAR-�415 PIC 9(2).

 �4 START-MONTH-�415 PIC 9(2).

 �4 START-DAY-�415 PIC 9(2).

 �3 STATUS-�415 PIC 9(4).

 �3 FILLER PIC X(1).

 �2 DEPARTMENT.

 �3 DEPT-ID-�41� PIC 9(4).

 �3 DEPT-NAME-�41� PIC X(45).

 �3 FILLER PIC X(7).

 �2 OFFICE.

 �3 OFFICE-CODE-�45� PIC 9(3).

 �3 FILLER PIC X(5).

 �2 PATHREC.

 �3 WORK-PATH-ID PIC X(1�).

4.5.3 Step 3: Specify initialization options for program variable
storage

You can request that LRF clear program variable storage automatically when the
following path statuses are returned:

 ■ LR-ERROR

 ■ LR-NOT-FOUND

You specify these options in the ON LR-ERROR and ON LR-NOT-FOUND clauses
of the ADD LOGICAL RECORD DDL statement. The default for each option is
NOCLEAR.

Specifying CLEAR: By specifying CLEAR, you ensure that the data in program
variable storage made available to the user meets program WHERE clause selection
criteria. This option is recommended if you want LRF to return complete logical
records to the program.

The following example shows how to specify initialization options for the
EMP-INFO-LR logical record. These initialization options ensure that program
variable storage will be cleared when LRF returns a path status of LR-NOT-FOUND
or LR-ERROR.

4-10 CA-IDMS Logical Record Facility

4.5 Defining logical records

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 .

 .

 .

ADD

LOGICAL RECORD NAME IS EMP-INFO-LR

 ELEMENTS ARE

 EMPLOYEE

 DEPARTMENT

 OFFICE

PATHREC VERSION 1

ON LR-ERROR CLEAR ─┐ Initialization
ON LR-NOT-FOUND CLEAR ─┘ options

 .

 .

 .

For more information on complete and partial logical records, refer to Chapter 11,
“Controlling Path Execution” on page 11-1.

4.5.4 Step 4: Document the logical record

To give programmers the information they need to use the subschema successfully,
you should document each logical record thoroughly. You can document a logical
record by using the COMMENTS clause of the ADD LOGICAL RECORD DDL
statement. The information you provide will be copied along with the logical record
to the appropriate area of program variable storage.

Coding preliminary comments: It is recommended that you code preliminary
comments at this stage of the subschema definition process. Once you have defined
the associated path groups and paths, you can make your comments more complete.

For the preliminary comments, you can:

■ List the database records that the logical record will access

■ List the DML verbs that can be issued for the logical record

■ Describe the program selection criteria that will map to each path

The following example shows how to code preliminary comments for the
EMP-INFO-LR logical record. For instructions on coding comments, refer to
Chapter 14, “Documenting the Subschema” on page 14-1.

Chapter 4. Starting to Define the Subschema 4-11

4.5 Defining logical records

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 .

 .

 .

ADD

LOGICAL RECORD NAME IS EMP-INFO-LR

ON LR-ERROR CLEAR

ON LR-NOT-FOUND CLEAR

 ELEMENTS ARE

 EMPLOYEE

 DEPARTMENT

 OFFICE

PATHREC VERSION 1

 COMMENTS

 '���'

- 'THE EMP-INFO-LR LOGICAL RECORD ACCESSES INFORMATION FROM THE'

- 'EMPLOYEE DATABASE RECORD AND ALSO ACCESSES INFORMATION'

- 'FROM THE ASSOCIATED DEPARTMENT AND OFFICE RECORDS.'

 - '���'

 - ' '

- 'LR VERBS ALLOWED: OBTAIN'

 - ' '

 - '���'

 - ' '

- 'SELECTION CRITERIA (TOTAL OF FIVE PATHS)'

 - ' '

- ' OBTAIN PATH GROUP:'

 - ' '

 - ' '

- ' PATH 1) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR ALL EMPLOYEES WHO ARE'

 - ' ON LEAVE.'

 - ' '

- ' THE PATH WILL BE SELECTED IF THE PROGRAM'

- ' REQUEST INCLUDES THE KEYWORD ON-LEAVE.'

 - ' '

 - ' '

- ' PATH 2) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR A PARTICULAR EMPLOYEE.'

- ' IT USES THE EMP-ID-�415 FIELD AS A'

- ' CALC KEY TO ACCESS EMPLOYEE INFORMATION.'

 - ' '

- ' THE PATH WILL BE SELECTED IF ANY OF THESE'

- ' COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE'

 - ' CLAUSE:'

 - ' '

- ' EMP-ID-�415 = A NUMERIC LITERAL'

- ' A PROGRAM VARIABLE'

- ' A FIELD IN THE LOGICAL-RECORD'

- ' AREA OF PROGRAM VARIABLE STORAGE'

 - ' '

 .

 .

 .

4-12 CA-IDMS Logical Record Facility

Chapter 5. Defining Path Groups

5.1 What is a path group . 5-3
5.2 Creating the definition . 5-4

Chapter 5. Defining Path Groups 5-1

5-2 CA-IDMS Logical Record Facility

5.1 What is a path group

5.1 What is a path group

Path groups: A path group is a collection of paths that service a particular type of
program request. Every path defined for a logical record must be included in a path
group; you define at least one path group for each logical record.

You can write up to four path groups for any given logical record:

■ An OBTAIN path group contains paths that service program requests to OBTAIN
a logical record.

■ A MODIFY path group should contain paths that service program requests to
MODIFY a logical record.

■ A STORE path group should contain a collection of paths that service program
requests to STORE a logical record.

■ An ERASE path group should contain a collection of paths that service program
requests to ERASE a logical record.

Retrieval paths: Paths included in an OBTAIN path group are called retrieval
paths. With retrieval paths, you can:

■ Issue path-DML commands to retrieve a database record

■ Iterate the path at the request of the program

Note: You cannot use a retrieval path to update a database record.

Update paths: Paths included in MODIFY, STORE, and ERASE path group are
called update paths. You can issue any path-DML command (including retrieval
commands) within an update path. However, you cannot iterate the path at the request
of the program.

Note: Be careful when using a program WHERE clause since it is evaluated prior to
the execution of an update verb.

Chapter 5. Defining Path Groups 5-3

5.2 Creating the definition

5.2 Creating the definition

You define a path group by using the ADD PATH-GROUP DDL statement. To
define a path group, you should:

■ Determine the verbs you want the programmer to be able to issue for the logical
record. You code a path-group statement for each of these verbs.

■ Design and code the paths you need within each path group.

Instructions for coding paths are presented in Chapter 6, “Specifying Path
Selectors” on page 6-1, through Chapter 14, “Documenting the Subschema” on
page 14-1.

Example: The following example shows how to define the OBTAIN path group
used in the sample EMP-INFO-LR logical record.

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 .

 .

 .

ADD

LOGICAL RECORD NAME IS EMP-INFO-LR

 .

 .

 .

ADD

PATH-GROUP NAME IS OBTAIN EMP-INFO-LR

SELECT FOR KEYWORD ON-LEAVE

 .

 .

 .

SELECT FOR FIELDNAME-EQ EMP-ID-�415

 OF EMPLOYEE

 .

 .

 .

SELECT FOR FIELDNAME-EQ DEPT-ID-�41�

 OF DEPARTMENT

 .

 .

 .

(other paths follow)

Locating an appropriate path group: When LRF receives a logical-record
request from the program, it locates the appropriate path group based on the DML
verb issued and the name of the object logical record. The following diagram shows
how LRF locates an appropriate path group.

5-4 CA-IDMS Logical Record Facility

5.2 Creating the definition

 ADD

SUBSCHEMA NAME IS EMPLR35

OF SCHEMA NAME IS EMPSCHM

VERSION IS 1

 .

 .

 .

 ADD

Program request LOGICAL RECORD NAMEIS EMP-INFO-LR

 .

DML verb Logical record name .

 ┌─────┐ ┌─────────┐ .

 │ │ │ │ ADD

OBTAIN FIRST EMP-INFO-LR 	───────────� PATH-GROUP NAME IS OBTAIN EMP-INFO-LR

WHERE DEPT-ID-�41� EQ '52��'.

SELECT FOR KEYWORD ON-LEAVE

 .

 .

 .

SELECT FOR FIELDNAME-EQ EMP-ID-�415

 OF EMPLOYEE

 .

 .

 .

SELECT FOR FIELDNAME-EQ DEPT-ID-�41�

 OF DEPARTMENT

 .

 .

 .

(other paths follow)

Chapter 5. Defining Path Groups 5-5

5-6 CA-IDMS Logical Record Facility

Chapter 6. Specifying Path Selectors

6.1 What is a path selector? . 6-3
6.2 Using the KEYWORD selector . 6-5

6.2.1 Examples . 6-5
6.3 Using the FIELDNAME-EQ selector . 6-6

6.3.1 Examples . 6-6
6.4 Using the FIELDNAME selector . 6-8

6.4.1 Examples . 6-8
6.5 Using the ELEMENT selector . 6-9

6.5.1 Examples . 6-9
6.6 Using a null SELECT clause . 6-10

6.6.1 Examples . 6-10
6.7 Using a SELECT clause that names an index 6-11

6.7.1 Example . 6-11
6.8 Using multiple selectors in a single SELECT clause 6-12

6.8.1 Examples . 6-12
6.9 Using multiple SELECT clauses for one path 6-13

6.9.1 Examples . 6-13
6.10 Determining path order . 6-14

Chapter 6. Specifying Path Selectors 6-1

6-2 CA-IDMS Logical Record Facility

6.1 What is a path selector?

6.1 What is a path selector?

Every path in a path group must contain at least one SELECT clause. A SELECT
clause delimits a path. It is always coded at the beginning of a path definition.

Path selectors: Each SELECT clause can contain any number of path selectors.
These selectors describe comparison criteria for the path. After locating the
appropriate path group, LRF uses selectors to locate an appropriate path for a program
request:

1. LRF compares the program WHERE clause with the SELECT clauses coded in
the path group. LRF examines SELECT clauses in the order in which they
appear. The first path whose selectors match those of the program request is the
path that LRF executes.

For a match to occur, the program request must satisfy all of the criteria specified
by the path selectors. However, the program WHERE clause can contain
additional selection criteria not matched in the path.

For information on selection criteria, refer to Chapter 10, “Specifying Selection
Criteria for Logical Records” on page 10-1.

2. If LRF does not encounter a match between the program WHERE clause and path
selectors, and there is no null SELECT clause, the program request will not be
processed.

The following diagram shows how LRF locates an appropriate path for a program
request by matching the selection criteria specified in the program request to the
selectors specified in the path.

 Path group

 ADD

┌� PATH-GROUP NAME IS OBTAIN EMP-INFO-LR

 │

│ SELECT FOR KEYWORD ON-LEAVE

Program request │ .

 │ .

DML verb Logical record name │ .

┌─────┐ ┌─────────┐ │ SELECT FOR FIELDNAME-EQ EMP-ID-�415

│ │ │ │ │ OF EMPLOYEE

OBTAIN FIRST EMP-INFO-LR 	─────────────────┘ .

WHERE DEPT-ID-�41� EQ '52��'. 	─────┐ .

 │ │ │ .

 └────────────────────┘ └─────� SELECT FOR FIELDNAME-EQ DEPT-ID-�41�

 Selection criteria OF DEPARTMENT

 .

 .

 .

SELECT FOR FIELDNAME-EQ OFFICE-CODE-�45�

 OF OFFICE

 .

 .

 .

SELECT USING INDEX EMP-NAME-NDX

FOR FIELDNAME EMP-LAST-NAME-�415 OF EMPLOYEE

FIELDNAME EMP-FIRST-NAME-�415 OF EMPLOYEE

 .

 .

 .

Chapter 6. Specifying Path Selectors 6-3

6.1 What is a path selector?

Types of path selectors: There are four path selectors that you can include in a
SELECT clause.

SELECT clauses: Using the four path selectors, you can code these SELECT
clauses in a path:

■ SELECT FOR KEYWORD

■ SELECT FOR FIELDNAME-EQ

■ SELECT FOR FIELDNAME

■ SELECT FOR ELEMENT

In addition, you can code:

■ A SELECT clause that has no selectors (a null SELECT)

■ A SELECT clause that specifies an index

■ Multiple selectors in one SELECT clause

■ Multiple SELECT clauses in a single path

The remainder of this chapter discusses how to use each of the four path selectors and
the various types of SELECT clauses. These discussions are followed by guidelines
for determining the order of your paths.

Path selector Description

KEYWORD keyword The WHERE clause of a program request must
include the named keyword. The comparison
must be in the affirmative (that is, NOT
KEYWORD isn't valid), and the KEYWORD
must not participate in an OR operation.

FIELDNAME-EQ lr-field-name The WHERE clause of a program request must
reference the named logical-record field in an
equality comparison. The field must be
compared to a single value and must not
participate in an OR operation.

FIELDNAME lr-field-name The WHERE clause of a program request must
reference the named logical-record field in any
manner; no restrictions apply.

ELEMENT lr-element-name The WHERE clause of a program request must
reference a field that is in a named logical-record
element.

6-4 CA-IDMS Logical Record Facility

6.2 Using the KEYWORD selector

6.2 Using the KEYWORD selector

What the KEYWORD selector does: You use the KEYWORD selector to:

■ Guarantee a match from the program to a given path. With the KEYWORD
selector, the program request doesn't have to contain detailed selection criteria to
be matched to a path.

■ Insulate the program from logical-record selection criteria. With the
KEYWORD selector, you can put all logical-record selection criteria in the path.
This allows you to change selection criteria without requiring that the program be
recompiled. It also makes data more secure, since programmers need not be
aware of the selection criteria used.

You can also use a keyword to specify which path is servicing a particular request.
This is very useful for the DBAs in debugging situations and can be useful to the
programmer, as well.

For a program request to match to a KEYWORD selector, the program must include
the named keyword in its WHERE clause.

 6.2.1 Examples

You have coded the following SELECT clause in a path:

SELECT FOR KEYWORD ON-LEAVE

The examples that follow show some program requests that can successfully access
this path as well as program requests that will not be successful.

Successful path access: This program request includes the named keyword in its
WHERE clause.

OBTAIN FIRST EMP-LR WHERE ON-LEAVE.

This program request includes the named keyword in its WHERE clause; the keyword
participates in an AND operation.

OBTAIN FIRST EMP-LR WHERE ON-LEAVE AND START-DATE-�415

 GE '8��1�1'.

Unsuccessful path access: This program request includes the named keyword in
a negative comparison. The keyword must be in the affirmative to match to the path.

OBTAIN FIRST EMP-LR WHERE NOT ON-LEAVE.

This program request includes the named keyword in an OR operation. The keyword
must be either by itself or in an AND operation to match to the path.

OBTAIN FIRST EMP-LR WHERE ON-LEAVE OR START-DATE-�415

 GE '8��1�1'.

Chapter 6. Specifying Path Selectors 6-5

6.3 Using the FIELDNAME-EQ selector

6.3 Using the FIELDNAME-EQ selector

What the FIELDNAME-EQ selector does: You use the FIELDNAME-EQ
selector to:

■ Guide a program request to a path that enters the database based on a
CALC key or sort key value. The FIELDNAME-EQ selector guarantees that the
path will be selected if the program references the key field in an appropriate way.

■ Limit the number of logical-record occurrences returned to the program.
Because the path is accessing a database record type based on a key value, fewer
record occurrences will be found and returned.

For a program request to match to a FIELDNAME-EQ selector, the program's
comparison must equate the logical-record field named in the selector to one of the
following:

■ A literal value

■ A program variable defined in the data dictionary

■ A field described in the logical-record area of program variable storage

 6.3.1 Examples

You have coded the following SELECT clause in a path:

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

The examples that follow show some program requests that can successfully access
this path as well as program requests that will not be successful.

Successful path access: This program request equates the named field to a
literal.

OBTAIN FIRST EMP-LR WHERE EMP-ID-�415 EQ '��15'.

This program request equates the named field to a variable defined in the data
dictionary.

MOVE '��15' TO WORK-FIELD.

OBTAIN FIRST EMP-LR WHERE EMP-ID-�415 OF EMPLOYEE EQ WORK-FIELD.

This program request equates the named field to a field defined in the logical-record
area of program variable storage.

MOVE '��15' TO EMP-ID-�415.

OBTAIN FIRST EMP-LR WHERE EMP-ID-�415 EQ

EMP-ID-�415 OF LR.

This program request equates the named field to a literal and includes the field in an
AND operation.

OBTAIN FIRST EMP-LR WHERE EMP-ID-�415 EQ '��15' AND

EMP-LAST-NAME EQ 'SMITH'.

6-6 CA-IDMS Logical Record Facility

6.3 Using the FIELDNAME-EQ selector

Unsuccessful path access: This program request includes the named field in a
comparison other than an equality comparison. The field must be referenced in an
equality comparison to match to the path.

OBTAIN FIRST EMP-LR WHERE EMP-ID-�415 GT '��1�'.

This program request includes the named field in a OR operation. The field can be
either by itself or included in an AND operation to match to the path.

OBTAIN FIRST EMP-LR WHERE (EMP-ID-�415 EQ '��15') OR

(EMP-LAST-NAME EQ 'JONES').

This program request equates the named field to an expression rather than to a single
value. The field must be compared to a single value to match to the path.

OBTAIN FIRST EMP-LR WHERE EMP-ID-�415 EQ (WORK-FIELD - 1).

Chapter 6. Specifying Path Selectors 6-7

6.4 Using the FIELDNAME selector

6.4 Using the FIELDNAME selector

What the FIELDNAME selector does: You use the FIELDNAME selector as
follows:

■ To perform retrieval based on a nonkey field

■ To perform indexed retrieval based on a generic key, as described in Chapter 7,
“Coding Path Database Retrieval Commands” on page 7-1

For a program request to match to a FIELDNAME selector, the program's comparison
must reference the logical-record field named in the selector. This field can be
referenced in any manner.

 6.4.1 Examples

You have coded the following SELECT clause in a path:

SELECT FOR FIELDNAME START-YEAR-�415 OF EMPLOYEE

The examples that follow show some program requests that can successfully access
this path.

Successful path access: This program request includes the named field in an
AND operation.

OBTAIN FIRST EMP-LR WHERE (START-YEAR-�415 GT '8�') AND

(TERMINATION-YEAR-�415 LT '85').

This program request includes the named field in a MATCHES comparison.

OBTAIN FIRST EMP-LR WHERE (START-YEAR-�415 MATCHES '8#')

AND (DEPARTMENT-NAME-�41� EQ 'DATA PROCESSING').

This program request equates the named field to an expression.

OBTAIN FIRST EMP-LR WHERE START-YEAR-�415 EQ

(START-YEAR-WORK + 1).

6-8 CA-IDMS Logical Record Facility

6.5 Using the ELEMENT selector

6.5 Using the ELEMENT selector

What the ELEMENT selector does: Paths associated with an ELEMENT selector
typically perform an area sweep. This selector can be used to service a broad range of
program requests.

For a program request to match an ELEMENT selector, the program's comparison
must reference a field that's included in the named logical-record element. The field
can be referenced in any manner.

 6.5.1 Examples

You have coded the following SELECT clause in a path:

SELECT FOR ELEMENT EMPLOYEE

The examples that follow show some program requests that can successfully access
this path.

Successful path access: This program request references a field contained in the
named logical-record element. The field is used in an equality comparison.

OBTAIN FIRST EMP-LR WHERE EMP-LAST-NAME-�415 EQ

EMP-LAST-NAME-�415 OF LR.

This program request references a field contained in the named logical-record element.
This field is included in an AND operation.

OBTAIN FIRST EMP-LR WHERE STATUS-�415 EQ '�5' AND

START-YEAR-�415 GE '8�'.

Chapter 6. Specifying Path Selectors 6-9

6.6 Using a null SELECT clause

6.6 Using a null SELECT clause

What a null SELECT clause does: A null SELECT clause contains no selectors.
This type of SELECT clause can service any logical-record request, including:

■ All logical-record requests for which no specific path has been defined

■ A logical-record request that doesn't contain a WHERE clause

Because a null SELECT clause can match any program request, you should use it
judiciously. If you choose to code a path with a null SELECT clause, always place
this path at the end of the path group.

 6.6.1 Examples

You have coded the following SELECT clause in a path:

SELECT

The examples that follow show some program requests that can successfully access
this path.

Successful path access: This program request doesn't match any other path.

OBTAIN FIRST EMP-LR WHERE (DEPT-NAME-�41� EQ DEPT-NAME-�41�

OF LR) AND (EMP-ID-�415 GT '��1�' AND EMP-ID-�415 LT '��5�').

This program request doesn't include a WHERE clause.

OBTAIN FIRST EMP-LR.

6-10 CA-IDMS Logical Record Facility

6.7 Using a SELECT clause that names an index

6.7 Using a SELECT clause that names an index

What a SELECT clause naming an index does: A SELECT clause that names
an index tells LRF to use the named index in path processing. You can associate an
index with any type of SELECT clause, including a null SELECT.

A program request matches this type of SELECT clause when it meets the
requirements of the various selectors (if any are included). The program request does
not have to specify an index name.

For more information on database entry based on indexes, refer to Chapter 7, “Coding
Path Database Retrieval Commands” on page 7-1.

 6.7.1 Example

You have coded the following SELECT clause in a path:

SELECT USING INDEX EMP-NAME-NDX

FOR FIELDNAME EMP-LAST-NAME-�415 OF EMPLOYEE

The examples that follow show some program requests that can successfully access
this path.

Successful path access: This program request meets the requirements of the
FIELDNAME selector.

OBTAIN FIRST EMP-LR WHERE EMP-LAST-NAME-�415 EQ

EMP-LAST-NAME-�415 OF LR.

This program request also meets the requirements of the FIELDNAME selector.

OBTAIN FIRST EMP-LR WHERE EMP-LAST-NAME-�415

 MATCHES 'B'.

Chapter 6. Specifying Path Selectors 6-11

6.8 Using multiple selectors in a single SELECT clause

6.8 Using multiple selectors in a single SELECT clause

A SELECT clause that contains multiple selectors combines the capabilities of each of
its selectors. The following combinations of selectors are especially useful:

■ A KEYWORD selector in combination with a FIELDNAME-EQ selector.
This combination guarantees that the path will be selected if the program
references the key field in an appropriate way, and it gives the path control over
the selection of logical-record occurrences.

■ Multiple FIELDNAME-EQ selectors. This combination is useful for paths that
enter the database based on a concatenated key. The various FIELDNAME-EQ
selectors guarantee that the path will be selected if the program references each
key field in the appropriate way.

For a program request to match a SELECT clause that contains multiple selectors, the
program request must meet the requirements of all the named selectors.

 6.8.1 Examples

You have coded the following SELECT clause in a path:

SELECT FOR KEYWORD MOD-EMP

FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

To successfully access this path, the request shown below meets the requirements of
both the FIELDNAME-EQ selector and the KEYWORD selector.

OBTAIN FIRST EMP-LR WHERE MOD-EMP AND EMP-ID-�415 EQ

EMP-ID-�415 OF LR.

You have coded the following SELECT clause in a path, where each
FIELDNAME-EQ selector references a component of a concatenated key:

SELECT FOR FIELDNAME-EQ RACE-TITLE

 FIELDNAME-EQ RACE-DATE

To successfully access this path, the request shown below meets the requirements of
both FIELDNAME-EQ selectors.

OBTAIN FIRST RACE-LR WHERE RACE-TITLE EQ 'DERBY' AND

RACE-DATE EQ '86�8�1'.

6-12 CA-IDMS Logical Record Facility

6.9 Using multiple SELECT clauses for one path

6.9 Using multiple SELECT clauses for one path

You can specify more than one SELECT clause for a path when you want to access
the path with different types of program requests. You may want to specify multiple
SELECT clauses in the following cases:

■ In combination with the USING INDEX clause, to process a concatenated index

■ To eliminate identical paths that are delimited by different SELECT clauses

■ To service different types of program requests that have not been matched to
previous paths in the subschema

To access a path delimited by multiple SELECT clauses, the program request need
only meet the requirements of one SELECT clause.

 6.9.1 Examples

You have coded the following SELECT clauses for a path:

SELECT USING INDEX EMP-NAME-NDX

FOR FIELDNAME EMP-LAST-NAME-�415 OF EMPLOYEE

FIELDNAME EMP-FIRST-NAME-�415 OF EMPLOYEE

SELECT USING INDEX EMP-NAME-NDX

FOR FIELDNAME EMP-LAST-NAME-�415 OF EMPLOYEE

The examples that follow show some program requests that can successfully access
this path.

Successful path access: This program request references both
EMP-LAST-NAME-0415 and EMP-FIRST-NAME-0415. Therefore, it meets the
requirements of the first SELECT clause.

OBTAIN FIRST EMP-LR WHERE (EMP-LAST-NAME-�415 EQ 'SMITH')

AND (EMP-FIRST-NAME-�415 EQ 'JANET').

This program request references EMP-LAST-NAME-0415 but does not reference
EMP-FIRST-NAME-0415. Therefore, it meets the requirements of the second
SELECT clause.

OBTAIN FIRST EMP-LR WHERE EMP-LAST-NAME-�415 MATCHES 'H'.

Chapter 6. Specifying Path Selectors 6-13

6.10 Determining path order

6.10 Determining path order

When LRF receives a request to retrieve or update a logical record, it attempts to
match the selection criteria specified by the program's WHERE clause to the selectors
in a path. LRF begins this process with the first path in the path group. It then
searches the path group from top to bottom until it finds a path whose selectors match
the program's selection criteria. The first matching path is the one that LRF selects.

Sequencing paths: Because LRF searches the path group sequentially, the order in
which you code paths can determine which paths will be chosen. To facilitate
efficient database entry, be sure you code paths in order, from most specific to least
specific.

As a rule, you should sequence paths by selector in the following order:

 ■ KEYWORD

 ■ FIELDNAME-EQ

 ■ FIELDNAME

 ■ ELEMENT

A path that has multiple selectors is often one of the more specific paths in a path
group, while a path with a null SELECT clause is always the least specific path.
Because a null SELECT clause matches all requests, it should be the last SELECT
clause coded in a path group.

Examples: The following examples shows the sequence of retrieval paths coded in a
sample logical record, along with some matching program requests. The paths are
coded in order from most specific to least specific. By coding the paths in this
sequence, efficient database entry is guaranteed.

6-14 CA-IDMS Logical Record Facility

6.10 Determining path order

ADD

LOGICAL RECORD NAME IS SAMPLE-LR

 .

 .

 .

ADD

PATH-GROUP NAME IS OBTAIN SAMPLE-LR

SELECT FOR KEYWORD ALL-EMP

 .

 .

 .

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

 .

 .

 .

SELECT USING EMP-NAME-NDX

FOR FIELDNAME EMP-LAST-NAME-�415 OF EMPLOYEE

FIELDNAME EMP-FIRST-NAME-�415 OF EMPLOYEE

 .

 .

 .

SELECT FOR FIELDNAME START-DATE-�415 OF EMPLOYEE

 .

 .

 .

SELECT FOR ELEMENT EMPLOYEE

 .

 .

 .

 SELECT

Chapter 6. Specifying Path Selectors 6-15

6-16 CA-IDMS Logical Record Facility

Chapter 7. Coding Path Database Retrieval
Commands

7.1 Introduction . 7-3
7.2 Using FINDs and OBTAINs . 7-6
7.3 Passing key values . 7-8

7.3.1 Specifying the key value as a literal . 7-8
7.3.2 Specifying the key value with the OF REQUEST clause 7-8
7.3.3 Examples . 7-9
7.3.4 Specifying the key value with the path OF LR clause 7-11
7.3.5 Examples . 7-11
7.3.6 Specifying the key value as an arithmetic expression 7-12
7.3.7 Example . 7-12

7.4 Retrieving CALC records . 7-14
7.5 Retrieving indexed records . 7-15

7.5.1 Using the FIND/OBTAIN EACH USING INDEX command 7-15
7.5.1.1 Associating an index with a SELECT clause 7-15
7.5.1.2 Specifying the sort key . 7-17
7.5.1.3 Passing sort key values . 7-18

7.5.2 Index processing considerations . 7-20
7.5.3 Using the FIND/OBTAIN WITHIN SET WHERE SORTKEY

command . 7-21
7.5.4 Using the FIND/OBTAIN WITHIN SET command 7-22

7.6 Retrieving records directly . 7-24

Chapter 7. Coding Path Database Retrieval Commands 7-1

7-2 CA-IDMS Logical Record Facility

7.1 Introduction

 7.1 Introduction

Path database retrieval commands locate data in the database and make it available to
the application program. You can use the following path-DML statements to retrieve
database records.

Unique LRF options: Path retrieval commands can include a number of options
that are unique to LRF:

■ All FIND/OBTAIN commands can include a WHERE clause to select the
occurrences of the database record to be accessed. (For the FIND/OBTAIN
WHERE CALCKEY, FIND/OBTAIN WITHIN SET WHERE SORTKEY, and
FIND/OBTAIN WHERE DBKEY commands, the WHERE clause is mandatory.)

■ The FIND/OBTAIN WHERE CALCKEY, FIND/OBTAIN WHERE SORTKEY,
and FIND/OBTAIN WITHIN SET/AREA commands can include an EACH
option, which directs LRF to iterate the path. Path iteration is discussed in
Chapter 11, “Controlling Path Execution” on page 11-1.

■ The FIND/OBTAIN WHERE CALCKEY, FIND/OBTAIN WHERE SORTKEY,
and FIND/OBTAIN WHERE DBKEY commands can contain the clauses OF
REQUEST or OF LR. These clauses indicate the location of the key value.
They're discussed under "Passing key values", later in this chapter.

In general, you use path retrieval commands in the same way that you use CA-ADS
database retrieval commands or navigational DML retrieval commands.

Note: In this document, all references to CA-ADS apply to the Application
Development System process language, which is used by CA-ADS and
CA-ADS/Batch.

Statement Action

FIND/OBTAIN WHERE
CALCKEY

Accesses a database record by using its CALC key
value.

FIND/OBTAIN WITHIN SET
WHERE SORTKEY

Accesses a database record in a sorted set by
using its sort key value.

FIND/OBTAIN WHERE
DBKEY

Accesses a database record directly by using its
database key (db-key) value.

FIND/OBTAIN WITHIN
SET/AREA

Accesses a database record based on its logical
location within a set or its physical location within
an area.

FIND/OBTAIN EACH USING
INDEX

Accesses a database record based on the index
specified in the path SELECT clause.

FIND/OBTAIN OWNER Accesses the owner record of a set occurrence.

FIND/OBTAIN CURRENT Accesses a database record by using previously
established currencies.

Chapter 7. Coding Path Database Retrieval Commands 7-3

7.1 Introduction

�� Information on using CA-ADS retrieval commands can be found in the CA-ADS
Reference Guide. Information on using navigational DML commands can be found in
the CA-IDMS Navigational DML Programming.

Table of similarities and differences: The table below summarizes the
similarities and differences between path retrieval commands and CA-ADS retrieval
commands.

Path command Comparison CA-ADS command

FIND/OBTAIN
 WHERE CALCKEY

Path command has no
DUPLICATE option. To
retrieve records with duplicate
CALC keys, you must use the
FIRST/NEXT or EACH
option of the path command.

FIND/OBTAIN
 CALC/DUPLICATE

FIND/OBTAIN
 WITHIN SET
 WHERE SORTKEY

The commands are
functionally equivalent.

FIND/OBTAIN
 WITHIN SET
 USING SORTKEY

FIND/OBTAIN
 WHERE DBKEY

Path command must specify a
record name. For the
CA-ADS command, this is
optional.

FIND/OBTAIN DB-KEY

FIND/OBTAIN
 WITHIN SET/AREA

Path command must specify a
record name. For the
CA-ADS command, this is
optional.

FIND/OBTAIN
 WITHIN SET/AREA

FIND/OBTAIN EACH
 USING INDEX

There is no CA-ADS
command for this path
command.

FIND/OBTAIN OWNER Path command can specify
record name.

FIND/OBTAIN OWNER

FIND/OBTAIN
CURRENT

Path command must specify
one of the following:

� A record name
� WITHIN set name
� WITHIN area name

For the CA-ADS command,
this is optional.

FIND/OBTAIN CURRENT

There is no path command for
this CA-ADS command.

ACCEPT

7-4 CA-IDMS Logical Record Facility

7.1 Introduction

Path command Comparison CA-ADS command

There is no path command for
this CA-ADS command.

RETURN DB-KEY

Note: CA-ADS database retrieval commands are similar in syntax and function to
COBOL DML commands.

�� For an in depth discussion of each path retrieval command, refer to the CA-IDMS
Database Administration.

Special considerations: When coding path retrieval commands, you should be
aware of special considerations that apply to:

■ Using FINDs and OBTAINs

■ Passing key values

■ Retrieving CALC records

■ Retrieving indexed records

■ Retrieving records directly

Chapter 7. Coding Path Database Retrieval Commands 7-5

7.2 Using FINDs and OBTAINs

7.2 Using FINDs and OBTAINs

FIND: The FIND format of the path FIND/OBTAIN commands locates a record
occurrence in the database but does not move the record occurrence to program
variable storage. You should issue a FIND command whenever possible, to avoid
moving data unnecessarily.

For example, you could use a FIND command to access a database record that the
path will use for navigational purposes only. Suppose the EMPOSITION record is
needed only to navigate from the EMPLOYEE record to the owner JOB record.
Because the application program does not require any data from the EMPOSITION
record, you could locate it with a FIND command.

Path code:

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

FIND FIRST EMPOSITION WITHIN EMP-EMPOSITION

OBTAIN OWNER WITHIN JOB-EMPOSITION.

Program request:

OBTAIN FIRST EMP-NAME-LR

WHERE EMP-ID-�415 EQ '��15'.

Note: You must always use a FIND command to access a database record that is not
included in the logical record. There is no reserved space for this record in
program variable storage; therefore, you can't OBTAIN the record.

7-6 CA-IDMS Logical Record Facility

7.2 Using FINDs and OBTAINs

OBTAIN: The OBTAIN format of the path FIND/OBTAIN commands locates a
record occurrence in the database and moves the record's contents to program variable
storage. You should OBTAIN a database record in the following situations:

■ When you want to return the contents of the record to the application program.

■ If you intend to issue an EVALUATE or COMPUTE statement against a field in
the record. The EVALUATE statement is discussed in Chapter 10, “Specifying
Selection Criteria for Logical Records” on page 10-1. The COMPUTE statement
is discussed in Chapter 12, “Manipulating Logical-Record Data” on page 12-1.

Chapter 7. Coding Path Database Retrieval Commands 7-7

7.3 Passing key values

7.3 Passing key values

Specifying a key value: You can specify a value for a CALC key, sort key, or
db-key in four ways:

■ As a literal coded in the path

■ As a logical-record field name, with the OF REQUEST clause

■ As a logical-record field name, with the OF LR clause

■ As an arithmetic expression

7.3.1 Specifying the key value as a literal

You can tell LRF to use a designated, numeric literal as a CALC key, sort key, or
db-key value. For example, the path shown below retrieves the JOB record occurrence
where the CALC key (JOB-ID-0440) equals '5031'.

Path code:

SELECT

OBTAIN FIRST JOB

WHERE CALCKEY EQ '5�31'.

Program request:

OBTAIN FIRST EMP-JOB-LR.

7.3.2 Specifying the key value with the OF REQUEST clause

The OF REQUEST clause tells LRF to use the key value contained in the LRC block
(that is, the value passed through the program's WHERE clause). This value can
equate to a literal, a program variable, or another field in the logical record. You
typically use the OF REQUEST clause to access a key value passed by the application
program.

When you issue an OF REQUEST:

7-8 CA-IDMS Logical Record Facility

7.3 Passing key values

1. The value to be passed is coded in the program's WHERE clause

2. At runtime, that value is placed in the LRC block

3. The OF REQUEST clause in the path tells LRF to look for the key field value in
the LRC block

The example below shows how the OF REQUEST clause works. LRF will use the
key value contained in the program's WHERE clause. It examines the LRC block to
find this value.

 7.3.3 Examples

Chapter 7. Coding Path Database Retrieval Commands 7-9

7.3 Passing key values

Using a value that equates to a literal: This path retrieves the JOB record
occurrence where the JOB-ID-0440 field is equal to '5100'.

Path code:

SELECT FOR FIELDNAME-EQ JOB-ID-�44� OF JOB

OBTAIN FIRST JOB

WHERE CALCKEY EQ JOB-ID-�44� OF REQUEST.

Program request:

OBTAIN FIRST EMP-JOB-LR

WHERE JOB-ID-�44� EQ '51��'.

Using a value that equates to a program variable: This path retrieves the JOB
record occurrence where the JOB-ID-0440 field is equal to the value of
JOB-WORK-FIELD.

Path code:

SELECT FOR FIELDNAME-EQ JOB-ID-�44� OF JOB

OBTAIN FIRST JOB

WHERE CALCKEY EQ JOB-ID-�44� OF REQUEST.

Program request:

MOVE '51��' TO JOB-WORK-FIELD.

OBTAIN FIRST EMP-JOB-LR

WHERE JOB-ID-�44� EQ JOB-WORK-FIELD.

Using a value that equates to another field in the logical record: This path
retrieves the JOB record occurrence where the JOB-ID-0440 field is equal to the value
of the JOB-ID-0440 field in program variable storage.

Path code:

SELECT FOR FIELDNAME-EQ JOB-ID-�44� OF JOB

OBTAIN FIRST JOB

WHERE CALCKEY EQ JOB-ID-�44� OF REQUEST.

Program request:

MOVE INPUT-JOB TO JOB-ID-�44�.

OBTAIN FIRST EMP-JOB-LR

WHERE JOB-ID-�44� EQ JOB-ID-�44� OF LR.

Note: The OF LR clause in the Program request points to the key field's location in
program variable storage. This clause will always correspond to an OF
REQUEST clause in the path.

7-10 CA-IDMS Logical Record Facility

7.3 Passing key values

7.3.4 Specifying the key value with the path OF LR clause

The OF LR clause (used in the path) tells LRF to use the key value contained in the
logical-record area of program variable storage. To use this clause successfully, you
should make sure that the named key field has been initialized to a value. The field
can be initialized by the path:

■ The path can move a value into the LR buffer through either a prior database
retrieval command or through a COMPUTE command.

You typically use the OF LR clause to access a key value that is set up in the path.
This technique is especially useful for processing records that have shared keys.

The example below shows how the OF LR clause works. LRF will use the key value
contained in the logical-record buffer. The key field must be initialized by the path.

 7.3.5 Examples

When using the OF LR clause, be sure to qualify the logical-record field name in both
the path and the program if the field name is not unique within the logical record.

Using a value the path has moved into program variable storage: This
path retrieves the LABEL record occurrence where the LABEL-NAME field is equal
to the value of the LABEL-NAME field in the ARTIST record occurrence. The
LABEL-NAME field is qualified by record name because it is not unique within the
logical record.

Path code:

SELECT

OBTAIN FIRST ARTIST

WHERE CALCKEY EQ '�415'

OBTAIN FIRST LABEL

WHERE LABEL-NAME OF LABEL EQ LABEL-NAME OF ARTIST OF LR.

Program request:

Chapter 7. Coding Path Database Retrieval Commands 7-11

7.3 Passing key values

OBTAIN FIRST ARTIST-LR.

Using a value the program has moved into program variable storage: This
path retrieves the ALBUM record occurrence where the ARTIST-ID field is equal to a
value passed by the program.

Path code:

SELECT

OBTAIN FIRST ALBUM

WHERE CALCKEY EQ ARTIST-ID OF ARTIST OF REQUEST.

Program request:

MOVE INPUT-ARTIST TO ARTIST-ID OF ARTIST.

OBTAIN FIRST ARTIST-LR WHERE ARTIST-ID EQ ARTIST-ID OF ARTIST OF LR

Comparison of OF REQUEST and OF LR use in path: The table below shows
the primary differences between the action of OF REQUEST and OF LR.

Using Value
comes
from

Value at
runtime

Message to LRF at runtime

OF
REQUEST

Program
WHERE
clause

Put in LRC
block

Look in LRC block

OF LR ■ Prior
path
retrieval

 ■ Path
COMPUTE

Placed in
LR buffer

Look in LR buffer

7.3.6 Specifying the key value as an arithmetic expression

You can tell LRF to use the result of an arithmetic expression as a CALC key, sort
key, or db-key value. The expression can be a simple or compound arithmetic
operation. The operands in the expression can be either a numeric literal or a
logical-record field specified in the OF LR clause.

 7.3.7 Example

For example, if the EMP-ID-0415 field is initialized to '0100', the following path will
retrieve the JOB record occurrence where the JOB-ID-0440 field contains the value
'0101'.

7-12 CA-IDMS Logical Record Facility

7.3 Passing key values

Path code:

SELECT

OBTAIN EACH EMPLOYEE

WHERE CALCKEY EQ EMP-ID-O415 OF REQUEST.

OBTAIN FIRST JOB

WHERE CALCKEY EQ (JOB-ID-�44� OF LR + 1).

Program request:

OBTAIN FIRST EMP-JOB-LR

WHERE EMP-ID-�415 EQ '�1��'.

Chapter 7. Coding Path Database Retrieval Commands 7-13

7.4 Retrieving CALC records

7.4 Retrieving CALC records

To retrieve a record based on its CALC key value, use the FIND/OBTAIN WHERE
CALCKEY path-DML command. The WHERE clause of this command is mandatory
and must identify the CALC key value of the appropriate record occurrence.

You specify the CALC key value in the same way that you specify any key value:

■ As a literal

■ As a logical-record field name, with the OF REQUEST clause

■ As a logical-record field name, with the OF LR clause

■ As an arithmetic expression

7-14 CA-IDMS Logical Record Facility

7.5 Retrieving indexed records

7.5 Retrieving indexed records

LRF provides a variety of ways to retrieve records that are members of an indexed set:

■ For a sorted indexed set, you can use one of the following methods:

– Issue a FIND/OBTAIN EACH USING INDEX command

– Issue a FIND/OBTAIN WITHIN SET WHERE SORTKEY command

– Issue a FIND/OBTAIN WITHIN SET command

■ For an unsorted indexed set, you would issue a FIND/OBTAIN WITHIN
SET/AREA command. You cannot use a sort key to access an unsorted indexed
set.

In all cases, you will be able to add on an index at a later date without recompiling the
program.

The three methods for accessing a sorted indexed set are discussed in detail below.

7.5.1 Using the FIND/OBTAIN EACH USING INDEX command

The FIND/OBTAIN EACH USING INDEX command directs LRF to retrieve a record
occurrence based on the record occurrence's index entry. When this command is
issued, LRF requests that the db-key and sort key for the specified record occurrence
be returned from the DBMS. LRF then uses the db-key to retrieve the data portion of
the indexed record, if needed.

This method of retrieving indexed records allows you to:

■ Associate an index with a path SELECT clause to give you more flexibility in
coding paths

■ Build the sort key from both the path and program WHERE clauses

■ Set up paths that can process complete, partial, or concatenated sortkeys

Each of these capabilities is discussed below.

7.5.1.1 Associating an index with a SELECT clause

You can associate an index with a path SELECT clause by naming the index in the
SELECT statement. LRF will use the named index whenever it finds an appropriate
FIND/OBTAIN EACH USING INDEX command in the path. To be appropriate, the
command must specify a record that is a member of the named indexed set.

The FIND/OBTAIN EACH USING INDEX command in the path code below
appropriately specifies the EMPLOYEE record, which is a member of the
EMP-NAME-NDX set.

 Examples

Chapter 7. Coding Path Database Retrieval Commands 7-15

7.5 Retrieving indexed records

Path code:

SELECT USING INDEX EMP-NAME-NDX

FOR FIELDNAME EMP-LAST-NAME-�415

OBTAIN EACH EMPLOYEE USING INDEX.

Program request:

OBTAIN FIRST EMP-NAME-LR

WHERE EMP-LAST-NAME-�415 EQ 'BOWER'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-NAME-LR

WHERE EMP-LAST-NAME-�415 EQ 'BOWER'.

 END.

DISPLAY.

By associating an index with a SELECT clause, you can use the same path code to
service each SELECT clause, as illustrated in the example below.

Path code:

7-16 CA-IDMS Logical Record Facility

7.5 Retrieving indexed records

SELECT USING INDEX ARTIST-NAME-NDX

FOR FIELDNAME ARTIST-NAME OF ARTIST

SELECT USING INDEX LABEL-NAME-NDX

FOR FIELDNAME LABEL-NAME OF ARTIST

OBTAIN EACH ARTIST USING INDEX.

Program request:

OBTAIN FIRST ARTIST-LR

WHERE ARTIST-NAME OF ARTIST MATCHES 'L'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT ARTIST-LR

WHERE ARTIST-NAME OF ARTIST MATCHES 'L'.

 END.

Or

OBTAIN FIRST ARTIST-LR

WHERE LABEL-NAME OF ARTIST EQ 'COLUMBIA'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT ARTIST-LR

WHERE LABEL-NAME OF ARTIST EQ 'COLUMBIA'.

 END.

DISPLAY.

In this example, a single path-DML command services two separate path SELECT
clauses. If you want to use a third index to process the ARTIST record, you would
simply add a new path selector. You would not have to change the path-DML
command or add additional path code.

7.5.1.2 Specifying the sort key

You specify a sort key value for the FIND/OBTAIN EACH USING INDEX command
by using the path and program WHERE clauses. Whenever possible, LRF builds a
sort key from information provided in both of these WHERE clauses. LRF builds the
key as follows:

1. LRF first looks at the path WHERE clause (if one exists) for references to sort key
fields. LRF uses these references to build a low and high range for the key.

2. LRF then looks at the program WHERE clause (if one exists) for references to
sort key fields. LRF uses these references to update the ranges that were
established in step 1.

The sort key that LRF uses must meet the sort criteria specified by both the path and
program WHERE clauses. If there are no WHERE clauses specified in the path or the
program, LRF walks the indexed set.

Examples: For example, suppose you have the following path code and program
request:

Chapter 7. Coding Path Database Retrieval Commands 7-17

7.5 Retrieving indexed records

Path code:

SELECT FOR FIELDNAME EMP-LAST-NAME-�415 OF EMPLOYEE

OBTAIN EACH EMPLOYEE USING EMP-NAME-NDX

 WHERE (EMP-LAST-NAME-�415 > 'H')

AND (EMP-LAST-NAME-�415 < 'M').

Program request:

OBTAIN FIRST EMP-NAME-LR

WHERE EMP-LAST-NAME-�415 < 'L'

WHILE LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-NAME-LR

WHERE EMP-LAST-NAME-�415 < 'L'.

 END.

DISPLAY.

In the above example, the sort key that LRF uses will be:

 Low value High value

 H L

If there were no program WHERE clause, the sort key would have been:

 Low value High value

 H M

7.5.1.3 Passing sort key values

You can set up paths to accept complete, partial (generic), and concatenated sort keys
to be passed from the program. This depends on how you code your SELECT
clauses:

■ To allow for complete and partial (generic) sort keys, you should code a
FIELDNAME selector. This selector guarantees that the path will be matched if
the program request references the specified field in any manner. With this

7-18 CA-IDMS Logical Record Facility

7.5 Retrieving indexed records

selector, the program can pass a string of characters, up to the length of the sort
key.

■ To allow for concatenated sort keys, you should code a FIELDNAME selector
for each portion of the sort key.

 Examples

Allowing for complete and partial sort keys

This path code allows the program to pass a string of characters, up to the length of
the sort key, for the EMP-FIRST-NAME-0415 component of the EMP-NAME-NDX.

Path code:

SELECT USING INDEX EMP-NAME-NDX

FOR FIELDNAME EMP-FIRST-NAME-�415

OBTAIN EACH EMPLOYEE USING INDEX.

Program request:

OBTAIN NEXT EMP-NAME-LR

WHERE (EMP-FIRST-NAME-�415 GE 'H') AND (EMP-FIRST-NAME-�415 LT 'M').

Allowing for concatenated sort keys

This path code allows the program to pass a concatenated sort key for the
EMP-NAME-NDX. Because a FIELDNAME selector has been associated with each
component of the concatenated key, a program request must reference both
components to match to the path.

Path code:

SELECT FOR FIELDNAME EMP-LAST-NAME-�415

 FIELDNAME EMP-FIRST-NAME-�415

OBTAIN EACH EMPLOYEE USING EMP-NAME-NDX INDEX.

Program request:

Chapter 7. Coding Path Database Retrieval Commands 7-19

7.5 Retrieving indexed records

OBTAIN FIRST EMP-INFO-LR

WHERE (EMP-LAST-NAME-�415 EQ 'MURDOCH') AND

(EMP-FIRST-NAME-�415 EQ 'CATHY').

7.5.2 Index processing considerations

The presences of an OR operand in the WHERE clause — even if the syntax
references only key fields — results in the index being swept:

 Efficient path

OBTAIN EACH PLAYER USING INDEX

WHERE LAST-NAME GE WORK-LAST-NAME OF LR

ON ���� DO

EVALUATE FIRST-NAME OF LR GT

WORK-FIRST-NAME OF LR

ON 2��1 ITERATE

ON ���� NEXT

 END

ON 2��1 NEXT

If your index is defined with KEY = composite of elementary items, an OBTAIN
USING INDEX with the key equal to a group item which is equivalent to the
composition of the elementary items, results in the index being swept.

 Examples

 Path code:

SELECT USING INDEX IX-A FOR FIELDNAME GE-KEY OF A

OBTAIN EACH A USING INDEX

 Program request:

OBTAIN FIRST LR WHERE GE-KEY GE F-SEARCH-KEY1

AND GE-KEY LE F-SEARCH-KEY2

If your index has concatenated keys, a program request that passes a non-high-order
key only results in a full sweep of the index, with all entries being returned:

 Sortkey:

LAST-NAME

FIRST-NAME

 Path code:

OBTAIN EACH PLAYER USING INDEX

 Program request:

OBTAIN FIRST PLAYER-LR WHERE FIRST-NAME EQ 'DAVID'.

Unpredictable results occur if a program request for a logical record compares a
sortkey with a field in the same physical record. In the example below, assume
HIRE-DATE is a sortkey and both fields are in the player record:

7-20 CA-IDMS Logical Record Facility

7.5 Retrieving indexed records

 Program request:

OBTAIN FIRST PLAYER-LR

 WHERE HIRE-DATE EQ TERMINATION DATE.

A workable method of applying this type of selection criteria is with an evaluate
command in the path:

 Path code:

OBTAIN EACH PLAYER USING INDEX

EVALUATE HIRE-DATE OF LR EQ

TERMINATION-DATE OF LR

ON 2��1 ITERATE

ON ���� NEXT

Note: LRF does not have enough information to build the internal high-low table
needed for fencing in the index search, because the actual value for
TERMINATION-DATE is not available until the player record is obtained.
LRF expects the information before the return against the INDEX SORTKEY
is issued.

7.5.3 Using the FIND/OBTAIN WITHIN SET WHERE SORTKEY
command

The FIND/OBTAIN WITHIN SET WHERE SORTKEY command directs the DBMS
to search the index until it finds a sort key value that matches the value specified.
When a match is found, the DBMS returns the data portion of the indexed record to
LRF.

Complete sort key: If you use this method to retrieve records in an indexed set,
you must specify a complete sort key value. You specify a sort key value in the same
way that you specify a CALC key value in path:

■ As a literal coded in the path

■ As a logical-record field name, with the OF REQUEST clause

■ As a logical-record field name, with the OF LR clause

■ As an arithmetic expression

These specifications are described earlier in this chapter, under 7.3, “Passing key
values” on page 7-8.

Example: For example, the path shown below retrieves the first JOB record
occurrence where the TITLE-0440 field is equal to 'PROGRAMMER'.

Chapter 7. Coding Path Database Retrieval Commands 7-21

7.5 Retrieving indexed records

Path code:

SELECT FOR FIELDNAME EQ TITLE-�44� OF JOB

OBTAIN FIRST JOB WITHIN JOB-TITLE-NDX

WHERE SORTKEY EQ TITLE-�44� OF REQUEST.

Program request:

OBTAIN FIRST EMP-JOB-LR

WHERE TITLE-�44� EQ 'PROGRAMMER'.

7.5.4 Using the FIND/OBTAIN WITHIN SET command

The FIND/OBTAIN WITHIN SET command directs LRF to walk the indexed set until
it meets path and program selection criteria. This option is recommended in the
following situations:

■ If you want to retrieve all of the record occurrences in the set

■ If you want to select a record occurrence on the basis of a nonkey field

 Examples

Retrieving all record occurrences in an indexed set

7-22 CA-IDMS Logical Record Facility

7.5 Retrieving indexed records

This path retrieves all EMPLOYEE records in sorted order, based on last name.

Path code:

SELECT

OBTAIN EACH EMPLOYEE WITHIN EMP-NAME-NDX.

Program request:

OBTAIN FIRST EMP-NAME-LR.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-NAME-LR.

 END.

DISPLAY.

Selecting a record occurrence on the basis of a nonkey field

This path retrieves all employees who are on leave.

Path code:

SELECT FOR KEYWORD ON-LEAVE

OBTAIN EACH EMPLOYEE WITHIN EMP-NAME-NDX

WHERE STATUS-�415 EQ '�4'.

Program request:

OBTAIN FIRST EMP-INFO-LR WHERE ON-LEAVE.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-INFO-LR WHERE ON-LEAVE.

 END.

DISPLAY.

Chapter 7. Coding Path Database Retrieval Commands 7-23

7.6 Retrieving records directly

7.6 Retrieving records directly

To retrieve a record directly, based on its db-key value, use the FIND/OBTAIN
WHERE DBKEY path-DML command. The WHERE clause of this command is
mandatory and must identify the db-key value of the appropriate record occurrence.

You can specify a db-key value in the same way that you specify a sort key or CALC
key value:

■ As a literal (the db-key value must be a numeric literal)

■ As a logical-record field name, with the OF REQUEST clause

■ As a logical-record field name, with the OF LR clause

■ As an arithmetic expression

These specifications are described earlier in this chapter under 7.3, “Passing key
values” on page 7-8.

Because the ACCEPT DB-KEY and RETURN DB-KEY statements are not valid in
paths, the required db-key information is usually passed from the program. The
program can:

■ Pass the db-key value to the path through any field in the logical record,
including an IDD-defined work field. The field used must be included in the
subschema view. The record that contains the field must be defined as a
logical-record element.

■ Issue a RETURN DB-KEY statement if the record is indexed.

■ Issue an ACCEPT DB-KEY statement if the subschema has a usage mode of
MIXED.

Examples: For example, the following path will obtain the DEPARTMENT record
occurrence where the db-key equals the value of WORK-FIELD in program variable
storage.

7-24 CA-IDMS Logical Record Facility

7.6 Retrieving records directly

Path code:

SELECT

OBTAIN FIRST DEPARTMENT

WHERE DBKEY EQ WORK-FIELD OF REQUEST.

Program request (mixed mode only):

MOVE INPUT-ID TO EMP-ID-�415.

FIND CALC EMPLOYEE.

ACCEPT DB-KEY INTO WORK-FIELD

FROM DEPARTMENT-EMPLOYEE CURRENCY.

OBTAIN FIRST EMP-INFO-LR

WHERE WORK-FIELD EQ WORK-FIELD OF LR.

Chapter 7. Coding Path Database Retrieval Commands 7-25

7-26 CA-IDMS Logical Record Facility

Chapter 8. Coding Path Database Update Commands

8.1 Introduction . 8-3
8.2 Storing database records . 8-4

8.2.1 When you don't have to establish currency 8-4
8.2.2 When you must establish currency . 8-6

8.3 Modifying database records . 8-8
8.3.1 Example . 8-8

8.4 Erasing database records . 8-10
8.4.1 Examples . 8-11

8.5 Connecting database records . 8-13
8.5.1 Examples . 8-13

8.6 Disconnecting database records . 8-16
8.6.1 Examples . 8-16

Chapter 8. Coding Path Database Update Commands 8-1

8-2 CA-IDMS Logical Record Facility

8.1 Introduction

 8.1 Introduction

You use path database update commands to update database record occurrences.
These commands can only be issued in update paths (that is, STORE, MODIFY, and
ERASE paths).

Path-DML statements: You can use the following path-DML statements to update
database records:

■ STORE adds a new database record occurrence to the database by using data
present in program variable storage.

■ MODIFY changes the contents of an existing database record occurrence by using
data present in program variable storage.

■ ERASE deletes the current occurrence of a database record.

■ CONNECT establishes the current occurrence of a database record as a member
of the current occurrence of a set.

■ DISCONNECT disconnects the current occurrence of a database record from the
current occurrence of a set.

Path database update commands are similar in syntax and function to CA-ADS
database update commands and navigational DML update commands. For a complete
description of path database update commands, refer to the CA-IDMS Database
Administration.

Note: For update requests, ensure that the LR buffer contains the values needed to
fulfill the WHERE clause.

The remainder of this chapter describes how to store, modify, erase, connect, and
disconnect database records by using LRF.

Chapter 8. Coding Path Database Update Commands 8-3

8.2 Storing database records

8.2 Storing database records

Usage: You use the STORE command to:

■ Acquire space in the database and a database key for a new record occurrence

■ Transfer the values of the record elements from program variable storage to the
object record occurrence in the database

■ Connect the object record to all sets for which it's defined as an automatic
member

Conditions: Before a STORE command can be executed in LRF, the following
conditions must be satisfied:

■ All areas affected either directly or indirectly by the STORE command must be
readied in an update usage mode.

■ All fields contained in the record to be stored should be included in the
subschema. Any fields that are not included in the subschema will be initialized
to low values.

■ The record type of the record to be stored must be defined as a logical-record
element.

■ All CALC and sort key fields must be initialized.

■ Appropriate currencies must be established if:

– The object record has a location mode of VIA

– The object record participates as an automatic member of a set

– The set order is NEXT or PRIOR

You can design paths that store database records in a variety of ways, depending on
the following factors:

■ Whether currency needs to be established in the database for associated records

■ Whether you want to use LRF to implement data integrity rules

Design considerations based on currency needs are discussed below. The
implementation of data integrity rules through LRF is discussed in Chapter 16,
“Implementing Data Integrity Rules” on page 16-1.

8.2.1 When you don't have to establish currency

If currency doesn't need to be established in the database prior to the STORE, you can
code a STORE path that simply stores the object record. Because the path does not
require key information, you can use either a KEYWORD selector or a null SELECT
clause to delimit the path.

For example, to store a new JOB record occurrence, you could code the following
path:

8-4 CA-IDMS Logical Record Facility

8.2 Storing database records

Chapter 8. Coding Path Database Update Commands 8-5

8.2 Storing database records

Path code:

ADD

PATH-GROUP NAME IS STORE EMP-JOB-LR

SELECT FOR KEYWORD STORE-JOB

 STORE JOB.

Program request:

MOVE WORK-JOB TO EMP-JOB-LR.

STORE EMP-JOB-LR

 WHERE STORE-JOB.

8.2.2 When you must establish currency

If currency needs to be established in the database prior to a STORE, the program will
have to pass appropriate key information to the path. This information should be
passed through the program WHERE clause.

You generally establish currency by issuing an OBTAIN command in a path. There
are two recommended ways to issue this command:

■ Issue an OBTAIN command in an OBTAIN path. Then issue a STORE command
in a separate STORE path.

■ Issue an OBTAIN command in a STORE path.

In either case, you should use FIELDNAME-EQ selectors to force the program to pass
the necessary key information.

Examples: These examples show two ways to store the EMPOSITION record. To
store this record, you must establish currency on the appropriate EMPLOYEE record.

8-6 CA-IDMS Logical Record Facility

8.2 Storing database records

Establishing currency in an OBTAIN path

This path establishes currency on the appropriate EMPLOYEE record in an OBTAIN
path.

Path code:

ADD

PATH-GROUP NAME IS OBTAIN EMP-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST.

ADD

PATH-GROUP NAME IS STORE EMP-LR

 SELECT

FIND CURRENT EMPLOYEE

 STORE EMPOSITION.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

OBTAIN FIRST EMP-LR

WHERE EMP-ID-�415 EQ EMP-OF-�415 OF LR.

ON LR-FOUND THEN

 STORE EMP-LR.

Establishing currency in a STORE path

This path establishes currency on the appropriate EMPLOYEE record in a STORE
path.

Path code:

ADD

PATH-GROUP NAME IS STORE EMP-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

 STORE EMPOSITION.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

STORE EMP-LR

WHERE EMP-ID-�415 EQ EMP-ID-�415 OF LR.

Chapter 8. Coding Path Database Update Commands 8-7

8.3 Modifying database records

8.3 Modifying database records

Usage: You use the MODIFY command to replace the element values of a database
record occurrence with element values that are defined in program variable storage.

Conditions: Before a MODIFY command can be executed in LRF, the following
conditions must be satisfied:

■ All areas affected either directly or indirectly by the MODIFY command must be
readied in an update usage mode.

■ All fields to be modified should be included in the subschema view.

■ If a sort-key field is to be modified, the sorted set in which the object record
participates must also be included in the subschema.

■ The record type of the record to be modified must be defined as a logical-record
element.

■ The record to be modified must be established as current of run unit.

Steps: To MODIFY a record through LRF, you should follow these steps:

1. Issue an OBTAIN command in an OBTAIN path. This establishes the necessary
currency and brings the object record into program variable storage.

2. Issue a MODIFY command in a MODIFY path.

If the program is passing CALC key, sort key, or db-key information, be sure to code
the appropriate path selectors.

 8.3.1 Example

For example, to modify the STATUS-0415 field of a specific EMPLOYEE record
occurrence, you could code the following path:

8-8 CA-IDMS Logical Record Facility

8.3 Modifying database records

Path code:

ADD

PATH-GROUP NAME IS OBTAIN EMP-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST.

ADD

PATH-GROUP NAME IS MODIFY EMP-LR

SELECT FOR KEYWORD MOD-EMP

FIND CURRENT EMPLOYEE

 MODIFY EMPLOYEE.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

OBTAIN FIRST EMP-LR

WHERE EMP-ID-�415 EQ EMP-ID-�415 OF LR.

ON LR-FOUND THEN

 DO.

MOVE NEW-STATUS TO STATUS-�415.

 MODIFY EMP-LR

 WHERE MOD-EMP.

 END.

Chapter 8. Coding Path Database Update Commands 8-9

8.4 Erasing database records

8.4 Erasing database records

You use the ERASE command to delete a record from the database. Erasure is a
two-step process that first cancels a record's membership in any set occurrences and
then releases for reuse the space occupied by the record.

Usage: The ERASE command performs the following functions:

■ Disconnects the object record from all set occurrences in which it participates as a
member; logically or physically deletes the record from the database

■ Optionally erases all records that are mandatory members of set occurrences
owned by the object record

■ Optionally disconnects or erases all records that are optional members of set
occurrences owned by the object record

Conditions: Before an ERASE command can be executed in LRF, the following
conditions must be met:

■ All areas either directly or indirectly affected by the ERASE command must be
readied in an update usage mode.

■ The record type of the record to be erased must be included in the subschema, but
does not have to be defined as a logical-record element.

■ All sets in which the object record participates as owner either directly or
indirectly (for example, a set whose owner is a member of a set owned by the
object record) and all member record types in those sets must be included in the
subschema.

■ If the object record participates as a member in a set with a mandatory disconnect
option, the set's owner must be included in the subschema.

■ The object record must be established as current of run unit.

You can design paths that ERASE database records in a variety of ways:

■ Issue an OBTAIN command in an OBTAIN path to establish the necessary
currency. Then erase the record by issuing an ERASE command in an ERASE
path group.

■ Issue the OBTAIN and ERASE commands in an ERASE path.

■ Create a loop within an ERASE path group to erase all record occurrences within
a set or area. In this case, a single program request may result in multiple
physical ERASES.

8-10 CA-IDMS Logical Record Facility

8.4 Erasing database records

 8.4.1 Examples

Establishing currency in an OBTAIN path: This path erases a specific
occurrence of the EMPLOYEE record.

Path code:

ADD

PATH-GROUP NAME IS OBTAIN EMP-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST.

ADD

PATH-GROUP NAME IS ERASE EMP-LR

SELECT FOR KEYWORD ERASE-EMP

FIND CURRENT EMPLOYEE

 ERASE EMPLOYEE.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

OBTAIN FIRST EMP-LR

WHERE EMP-ID-�415 EQ EMP-ID-�415 OF LR.

ON LR-FOUND THEN

 ERASE EMP-INFO-LR

 WHERE ERASE-EMP.

Establishing currency in an ERASE path: This path also erases a specific
occurrence of the EMPLOYEE record.

Path code:

ADD

PATH-GROUP NAME IS ERASE EMP-LR

SELECT FOR KEYWORD ERASE-EMP

FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

 ERASE EMPLOYEE.

Program request:

Chapter 8. Coding Path Database Update Commands 8-11

8.4 Erasing database records

MOVE INPUT-EMP-ID TO EMP-ID-�415.

ERASE EMP-LR

WHERE (EMP-ID-�415 EQ EMP-ID-�415 OF LR)

 AND ERASE-EMP.

Erasing records by walking a set: This path erases all EMPOSITION records
within a specific EMP-EMPOSITION set occurrence. Path iteration is discussed in
detail in Chapter 11, “Controlling Path Execution” on page 11-1.

Path code:

ADD

PATH-GROUP NAME IS ERASE EMP-LR

SELECT FOR KEYWORD ERASE-EMPOSIT

FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

OBTAIN EACH EMPOSITION WITHIN EMP-EMPOSITION

 ERASE EMPOSITION

ON ���� ITERATE.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

ERASE EMP-LR

WHERE (EMP-ID-�415 EQ EMP-ID-�415 OF LR)

 AND ERASE-EMPOSIT.

8-12 CA-IDMS Logical Record Facility

8.5 Connecting database records

8.5 Connecting database records

Usage: You use the CONNECT command to establish a record occurrence as a
member of a set occurrence. Membership for the set can be defined as either optional
or mandatory.

Conditions: Before a CONNECT command can be executed in LRF, the following
conditions must be met:

■ All areas affected either directly or indirectly by the CONNECT command must
be readied in an update usage mode.

■ The record type of the record to be connected must be included in the subschema.
This record does not have to be defined as a logical-record element.

■ The named set (into which the specified record will be connected) must also be
included in the subschema.

■ The object record must be established as current of its record type.

■ The occurrence of the set into which the specified record will be connected must
be established as current of set. If set order is NEXT or PRIOR, current of set
also determines the position where the specified record will be connected within
the set.

In general, you would code the CONNECT command in either a STORE path or a
MODIFY path, depending on how you're using it.

 8.5.1 Examples

Connecting a record in a STORE path

Chapter 8. Coding Path Database Update Commands 8-13

8.5 Connecting database records

This path connects the EMPOSITION record to a JOB record when the EMPOSITION
record is stored.

Path code:

ADD

PATH-GROUP NAME IS STORE EMP-JOB-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

FIELDNAME-EQ JOB-ID-�44� OF JOB

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

 STORE EMPOSITION

FIND FIRST JOB

WHERE CALCKEY EQ JOB-ID-�44� OF REQUEST

CONNECT EMPOSITION TO JOB-EMPOSITION.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

MOVE INPUT-JOB-ID TO JOB-ID-�44�.

STORE EMP-JOB-LR

WHERE (EMP-ID-�415 EQ EMP-ID-�415 OF LR)

AND (JOB-ID-�44� EQ JOB-ID-�44� OF LR).

Connecting a record in a MODIFY path

This path processes the transfer of an employee by connecting the EMPLOYEE record
to a new DEPARTMENT record.

Path code:

8-14 CA-IDMS Logical Record Facility

8.5 Connecting database records

ADD

PATH-GROUP NAME IS MODIFY EMP-LR.

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

CONNECT EMPLOYEE TO DEPT-EMPLOYEE.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

MOVE INPUT-DEPT-ID TO DEPT-ID-�41�.

MODIFY EMP-LR

WHERE (EMP-ID-�415 EQ EMP-ID-�415 OF LR)

AND (DEPT-ID-�41� EQ DEPT-ID-�41� OF LR).

Chapter 8. Coding Path Database Update Commands 8-15

8.6 Disconnecting database records

8.6 Disconnecting database records

Usage: You use the DISCONNECT command to cancel the membership of a record
occurrence in a set occurrence. Membership in the object set must be defined as
optional.

Conditions: Before a DISCONNECT command can be executed in LRF, the
following conditions must be met:

■ All areas affected either directly or indirectly by the DISCONNECT command
must be readied in an update usage mode.

■ The record type of the record to be disconnected must be included in the
subschema. This record does not have to be defined as a logical-record element.

■ The named set (from which the specified record will be disconnected) must also
be included in the subschema.

■ The object record must be established as current of its record type.

■ The occurrence of the set from which the specified record will be disconnected
must be established as current of set.

In general, you would code the DISCONNECT command in either an ERASE path or
a MODIFY path, depending on how you're using it.

 8.6.1 Examples

Disconnecting a record in an ERASE path

8-16 CA-IDMS Logical Record Facility

8.6 Disconnecting database records

This path disconnects the EMPOSITION record from a JOB record when the
EMPOSITION record is erased.

Path code:

ADD

PATH-GROUP NAME IS ERASE EMP-JOB-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

FIND FIRST EMPOSITION WITHIN EMP-EMPOSITION

FIND OWNER JOB WITHIN JOB-EMPOSITION

DISCONNECT EMPOSITION FROM JOB-EMPOSITION

 ERASE EMPOSITION.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

ERASE EMP-JOB-LR

WHERE EMP-ID-�415 EQ EMP-ID-�415 OF LR.

Disconnecting a record in a MODIFY path

This path processes the transfer of an employee by disconnecting the EMPLOYEE
record from the old DEPARTMENT record.

Path code:

ADD

PATH-GROUP NAME IS MODIFY EMP-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

FIND OWNER DEPARTMENT WITHIN DEPT-EMPLOYEE

DISCONNECT EMPLOYEE FROM DEPT-EMPLOYEE.

Program request:

Chapter 8. Coding Path Database Update Commands 8-17

8.6 Disconnecting database records

MOVE INPUT-EMP-ID TO EMP-ID-�415.

MODIFY EMP-LR

WHERE EMP-ID-�415 EQ EMP-ID-�415 OF LR.

8-18 CA-IDMS Logical Record Facility

Chapter 9. Coding Path Database Control
Commands

9.1 Introduction . 9-3
9.2 Evaluating empty-set conditions . 9-5

9.2.1 Example . 9-5
9.3 Evaluating set-membership status . 9-7

9.3.1 Example . 9-7
9.4 Locking a database record . 9-9

9.4.1 Example . 9-9

Chapter 9. Coding Path Database Control Commands 9-1

9-2 CA-IDMS Logical Record Facility

9.1 Introduction

 9.1 Introduction

You use path database control commands to evaluate set conditions and place locks on
database record occurrences. These commands can be issued in both retrieval paths
and update paths.

You can use the following path-DML statements to perform database control functions:

■ IF [NOT] EMPTY tests the current occurrence of the named set to determine
whether it contains any member record occurrences.

■ IF [NOT] MEMBER tests the record that is current of run unit to determine
whether it participates as a member of the named set.

■ KEEP places a shared or exclusive lock on the database record occurrence that is
current of the named record type, set, or area.

Control command comparison: The following table compares path database
control commands to CA-ADS database control commands. For a complete
description of path database control commands, refer to the CA-IDMS Database
Administration.

Path command Comparison CA-ADS command

IF [NOT] EMPTY These commands are
functionally
equivalent.

IF SET [NOT] EMPTY

IF [NOT] MEMBER These commands are
functionally
equivalent.

IF SET [NOT] MEMBER

KEEP [EXCLUSIVE] These commands are
functionally
equivalent.

KEEP [EXCLUSIVE]

There is no path
command for this
CA-ADS command.

KEEP LONGTERM

There is no path
command for this
CA-ADS command.

READY

There is no path
command for this
CA-ADS command.

COMMIT

There is no path
command for this
CA-ADS command.

ROLLBACK

Chapter 9. Coding Path Database Control Commands 9-3

9.1 Introduction

Note: In CA-ADS, BIND and FINISH commands are performed automatically.

The remainder of this chapter describes how to check for empty-set and
set-membership conditions, and how to place locks on database records.

9-4 CA-IDMS Logical Record Facility

9.2 Evaluating empty-set conditions

9.2 Evaluating empty-set conditions

To check for an empty-set condition, use the IF [NOT] EMPTY path-DML command.
Before this command can be executed, the object set must be current of run unit and
must be included in the subschema definition.

Note: Use this command when you want to check for a set with no members. To
check for an end-of-set condition, it is better to use the FIND/OBTAIN NEXT
WITHIN SET command.

LRF returns status codes in response to an IF [NOT] EMPTY query. You can use an
ON clause to test for a particular status code and indicate what action will be taken.

The status codes and their meanings are described below in the table below. ON
clauses are described in Chapter 11, “Controlling Path Execution” on page 11-1.

Status codes returned

Statement Status code Set condition

If set-name EMPTY 0000 Empty

1601 Not empty

 9.2.1 Example

The following example illustrates how to use the IF [NOT] EMPTY path-DML
command. In this example, the path retrieves all the employees who work in a
particular job. If the job has no employees, the path returns a 'JOB-NOT-FILLED'
status to the program.

Chapter 9. Coding Path Database Control Commands 9-5

9.2 Evaluating empty-set conditions

Path code:

SELECT FOR FIELDNAME-EQ JOB-ID-�44� OF JOB

OBTAIN FIRST JOB

WHERE CALCKEY EQ JOB-ID-�44� OF REQUEST

IF JOB-EMPOSITION IS EMPTY

ON ���� RETURN 'JOB-NOT-FILLED'

ON 16�1 NEXT

FIND EACH EMPOSITION WITHIN JOB-EMPOSITION

OBTAIN OWNER EMPLOYEE WITHIN EMP-EMPOSITION.

Program request:

MOVE INPUT-JOB-ID TO JOB-ID-�44�.

OBTAIN FIRST JOB-LR

WHERE JOB-ID-�44� EQ JOB-ID-�44� OF LR.

WHILE LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT JOB-LR

WHERE JOB-ID-�44� EQ JOB-ID-�44� OF LR.

 END.

DISPLAY.

9-6 CA-IDMS Logical Record Facility

9.3 Evaluating set-membership status

9.3 Evaluating set-membership status

To test whether a record is a member of a named set, use the IF [NOT] MEMBER
path-DML command.

Conditions: The following conditions must be satisfied before this command can be
executed:

■ The object record must be current of run unit.

■ The object record type must be included in the subschema.

■ The named set must be included in the subschema.

For sets that have an optional disconnect option or a manual connect option, you
should always issue an IF [NOT] MEMBER command before you issue a
FIND/OBTAIN OWNER command. For these types of sets, you can never assume
that the current of record or current of run unit is also current of set. For example, if
you issue a FIND/OBTAIN OWNER command for a record that is not currently
connected to the named set, you will retrieve the owner of the current record of set.

If a set is mandatory automatic, you don't have to check for an owner. Members of
this set will always have an owner.

LRF returns status codes in response to an IF [NOT] MEMBER query. The status
codes and their meanings are described in the following table.

Status codes returned

Statement Status code Member condition

If set-name MEMBER 0000 The current record of run unit
is a member of the named set.

1601 The current record of run unit
is not a member of the named
set.

 9.3.1 Example

The following example illustrates how to use the IF [NOT] MEMBER path-DML
command. In this example, the path retrieves the owner DEPARTMENT record for a
particular employee. If the employee is not associated with a department, the path
returns a 'NO-DEPT' path status to the program.

Chapter 9. Coding Path Database Control Commands 9-7

9.3 Evaluating set-membership status

Path code:

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

IF DEPT-EMPLOYEE MEMBER

ON ���� NEXT

ON 16�1 RETURN 'NO-DEPT'

OBTAIN OWNER DEPARTMENT WITHIN DEPT-EMPLOYEE.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

OBTAIN FIRST EMP-INFO-LR

WHERE EMP-ID-�415 EQ EMP-ID-�415 OF LR.

9-8 CA-IDMS Logical Record Facility

9.4 Locking a database record

9.4 Locking a database record

If you need to place an explicit lock on a database record, use the KEEP command.
The KEEP command maintains record locks for the duration of the recovery unit (that
is, until released by means of the COMMIT, FINISH, or ROLLBACK statements in
the program).

Alternatively, you can use the KEEP option of the FIND/OBTAIN statements to place
locks on records as they are retrieved. This clause is described in the CA-IDMS
Database Administration.

Note: LRF places implicit locks on current database record occurrences after the
execution of each path database retrieval, update, or control command. This
process is described in Chapter 15, “Currency Considerations” on page 15-1.

Conditions: Before the KEEP command can be executed in LRF, the following
conditions must be satisfied:

■ The object record must be current of the named record type, set, or area.

■ The object record type, set name, and area name must be included in the
subschema.

 9.4.1 Example

The example shown below illustrates how to use the KEEP path-DML command to
place an exclusive lock on an EMPLOYEE record before it is modified.

Path code:

Chapter 9. Coding Path Database Control Commands 9-9

9.4 Locking a database record

ADD

PATH GROUP NAME IS OBTAIN EMP-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

KEEP EXCLUSIVE CURRENT EMPLOYEE.

ADD

PATH GROUP NAME IS MODIFY EMP-LR

 SELECT

 MODIFY EMPLOYEE.

Program request:

MOVE INPUT-EMP-ID TO EMP-ID-�415.

MOVE NEW-STATUS TO STATUS-�415.

OBTAIN FIRST EMP-LR

WHERE EMP-ID-�415 EQ EMP-ID-�415 OF LR.

ON LR-FOUND

 THEN DO.

 MODIFY EMP-LR.

 END.

9-10 CA-IDMS Logical Record Facility

Chapter 10. Specifying Selection Criteria for Logical
Records

10.1 Introduction . 10-3
10.2 Using a WHERE clause . 10-4

10.2.1 Coding a program WHERE clause 10-4
10.2.2 Coding a path WHERE clause . 10-7
10.2.3 Program and path WHERE clause interactions 10-9

10.3 Using the EVALUATE command . 10-13

Chapter 10. Specifying Selection Criteria for Logical Records 10-1

10-2 CA-IDMS Logical Record Facility

10.1 Introduction

 10.1 Introduction

You can specify selection criteria for a logical record by:

■ Coding a WHERE clause to specify attributes of the logical-record occurrence
you want to access.

■ Issuing an EVALUATE command to determine whether an expression is true or
false. You can then direct LRF to perform specific path logic on the basis of this
evaluation.

Chapter 10. Specifying Selection Criteria for Logical Records 10-3

10.2 Using a WHERE clause

10.2 Using a WHERE clause

A WHERE clause is a boolean expression that can specify one of the following:

■ Criteria for selecting logical-record occurrences to be retrieved, stored, modified,
or erased

■ Criteria for selecting the database-records that will be used to construct the logical
record

A WHERE clause can be coded in the program, in the path, or in both the program
and the path. Program and path WHERE clauses are discussed below, followed by a
discussion of program and path WHERE clause interactions.

10.2.1 Coding a program WHERE clause

Usage: The program WHERE clause serves two functions:

■ Directs the program to an appropriate path by matching the criteria specified
in the WHERE clause to the path selectors. This is described in Chapter 6,
“Specifying Path Selectors” on page 6-1.

■ Specifies selection criteria to be applied to a logical record occurrence. The
program selection criteria is evaluated after a logical-record occurrence has been
placed in program variable storage. In the case of update verbs, the selection
criteria is evaluated before the logical-record occurrence is moved to the database.
If the selection criteria is not met, LRF returns a status of LR-NOT-FOUND.

Comparisons: The program WHERE clause consists of one or more comparisons
or keywords connected by boolean operators. The following table shows the general
format of the program WHERE clause. A program WHERE clause can consist of one
or more operands connected by a boolean operator.

WHERE clause comparison format: The following table shows the suggested
format of a program WHERE clause comparison. This comparison is formed by using
one first operand, one conditional operator, and one second operand.

First operand Boolean operator Second operand

keyword

[NOT] comparison

AND keyword

[NOT] comparison

[NOT] comparison OR [NOT] comparison

10-4 CA-IDMS Logical Record Facility

10.2 Using a WHERE clause

�� For information on program WHERE clause syntax, refer to the CA-ADS User
Guide.
 or the CA-IDMS Navigational DML Programming.

A program WHERE clause comparison is checked against data that has been moved
into program variable storage. If the path does not OBTAIN the records to be used in
the comparison, LRF returns a path status of LR-NOT-FOUND.

Examples: This program request asks LRF to retrieve all employees whose status
code is '01' (active), who work in a particular department.

First operand Conditional
operator

Second operand

Logical-record field name EQ (IS) (=)
NE
GT (>)
LT (<)
GE
LE

Alphanumeric or numeric
 literal

IDD-defined variable field

Arithmetic expression

CONTAINS
MATCHES

Alphanumeric literal

IDD-defined variable field

Logical-record field name
 OF LR

Path code:

Chapter 10. Specifying Selection Criteria for Logical Records 10-5

10.2 Using a WHERE clause

SELECT FOR FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE.

Program request:

MOVE INPUT-DEPT-ID TO DEPT-ID-�41�.

OBTAIN FIRST DEPT-LR

WHERE (DEPT-ID-�41� EQ DEPT-ID-�41� OF LR)

AND STATUS-�415 EQ '�1'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT DEPT-LR

WHERE (DEPT-ID-�41� EQ DEPT-ID-�41� OF LR)

AND STATUS-�415 EQ '�1'.

 END.

DISPLAY.

This program request asks LRF to retrieve information on all employees whose last
name begins with A.

Path code:

SELECT USING INDEX EMP-NAME-NDX FOR FIELDNAME EMP-LAST-NAME-�415

OBTAIN EACH EMPLOYEE USING INDEX.

Program request:

OBTAIN FIRST EMP-NAME-LR

WHERE EMP-LAST-NAME MATCHES 'A'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-NAME-LR

WHERE EMP-LAST-NAME MATCHES 'A'.

 END.

DISPLAY.

10-6 CA-IDMS Logical Record Facility

10.2 Using a WHERE clause

10.2.2 Coding a path WHERE clause

You use the path WHERE clause to specify selection criteria for the database records
used to construct a logical record occurrence. Path selection criteria is evaluated
before data is returned to program variable storage. Only those records (if any) that
meet the specified selection criteria are used to construct the logical record.

Consists of comparisons: The path WHERE clause consists of one or more
comparisons connected by boolean operators. To specify additional selection criteria
for FIND/OBTAIN WHERE CALCKEY, FIND/OBTAIN WHERE SORTKEY, and
FIND/OBTAIN WHERE DBKEY commands, you simply attach this additional criteria
with an AND operator.

The following table shows the general format of the path WHERE clause. A path
WHERE clause can consist of one or more comparisons connected by a boolean
operator.

 General format

Format of a path WHERE clause comparison The following table shows the
suggested format of a path WHERE clause comparison. This comparison is formed by
using one first operand, one conditional operator, and one second operand.

�� For information on path WHERE clause syntax, refer to the CA-IDMS Database
Administration.

First operand Boolean operator Second operand

[NOT] comparison AND
OR

[NOT] comparison

First operand Conditional
operator

Second operand

Logical-record field name EQ (IS) (=)
NE
GT (>)
LT (<)
GE
LE

Alphanumeric or numeric
 literal

Logical-record field name
 OF LR

Arithmetic expression

CONTAINS
MATCHES

Alphanumeric literal

Logical-record field name
 OF LR

Chapter 10. Specifying Selection Criteria for Logical Records 10-7

10.2 Using a WHERE clause

Examples: This path retrieves all employees whose status code is '04'

Path code:

SELECT USING INDEX EMP-NAME-NDX FOR KEYWORD ON-LEAVE

OBTAIN EACH EMPLOYEE USING INDEX

WHERE STATUS-�415 EQ '�4'.

Program request:

OBTAIN FIRST EMP-INFO-LR

 WHERE ON-LEAVE.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-INFO-LR

 WHERE ON-LEAVE.

 END.

DISPLAY.

This path retrieves all albums made by 'Baez' that were released after 12/31/84.

Path code:

10-8 CA-IDMS Logical Record Facility

10.2 Using a WHERE clause

SELECT FOR FIELDNAME-EQ ARTIST-ID OF ALBUM

OBTAIN EACH ALBUM

WHERE (CALCKEY EQ ARTIST-ID OF REQUEST)

AND (RELEASE-DATE > '841231').

Program request:

OBTAIN FIRST MUSIC-LR

WHERE ARTIST-ID OF ALBUM EQ 'BAEZ'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT MUSIC-LR

WHERE ARTIST-ID OF ALBUM EQ 'BAEZ'.

 END.

DISPLAY.

10.2.3 Program and path WHERE clause interactions

When both the program request and the path contain a WHERE clause, LRF evaluates
the WHERE clauses in the following order:

1. LRF evaluates the path WHERE clause first, before it returns a logical record to
program variable storage.

2. LRF then evaluates the program WHERE clause, based on the data in program
variable storage.

Allowable WHERE clause combinations: The following table summarizes the
WHERE clause combinations that LRF allows. LRF allows the WHERE clause
combinations described in this table. The presence of a WHERE clause is indicated
by an asterisk.

Chapter 10. Specifying Selection Criteria for Logical Records 10-9

10.2 Using a WHERE clause

Advantages Whenever possible, you should place a WHERE clause in the path,
rather than the program. Placing a WHERE clause in the path offers the following
advantages:

■ Better efficiency in time and resources because data is only brought into program
variable storage when the selection criteria is met

■ Better security because programmers need not be aware of the selection criteria
used

■ Ease of update because the code is centralized in the path

For a discussion of these design considerations, refer to Chapter 3, “Preliminary
Analysis and Design” on page 3-1.

 Examples

Program
WHERE clause

Path
WHERE
clause

Action

* * 1. Evaluates database-record occurrences
according to path WHERE clause selection
criteria, before data is placed in program
variable storage.

2. Evaluates logical-record occurrences
according to program WHERE clause
selection criteria, based on the data in
program variable storage.

* Evaluates database-record occurrences before
data is placed in program variable storage.

* Evaluates logical-record occurrences based on
data in program variable storage.

Places all data retrieved by the path into
program variable storage. Does no further
evaluation of this data.

10-10 CA-IDMS Logical Record Facility

10.2 Using a WHERE clause

Example 1

This combination of path and program WHERE clauses returns employee information
for each employee in the Data Processing department who started work after 12/31/80
and whose status is '01' (active).

Path code:

SELECT FOR FIELDNAME-EQ DEPT-ID-�41�

OBTAIN EACH DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

WHERE START-DATE-�415 > '8�1231'.

Program request:

OBTAIN FIRST DEPT-LR

WHERE DEPT-ID-�41� EQ '52��'

AND STATUS-�415 EQ '�1'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT DEPT-LR

WHERE DEPT-ID-�41� EQ '52��'

AND STATUS-�415 EQ '�1'.

 END.

DISPLAY.

Example 2

This combination of path and program WHERE clauses returns employee information
for each employee in the Data Processing department who started work between 1981
and 1985 inclusive.

Path code:

Chapter 10. Specifying Selection Criteria for Logical Records 10-11

10.2 Using a WHERE clause

SELECT FOR FIELDNAME-EQ DEPT-ID-�41�

OBTAIN EACH DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

WHERE START-DATE-�415 > '8�1231'.

Program request:

OBTAIN FIRST DEPT-LR

WHERE DEPT-ID-�41� EQ '52��'

AND START-DATE-�415 < '86�1�1'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT DEPT-LR

WHERE DEPT-ID-�41� EQ '52��'

AND START-DATE-�415 < '86�1�1'.

 END.

DISPLAY.

Example 3

This combination of path and program WHERE clauses returns employee information
for each employee in the Data Processing department who started work during or after
1986.

Employees who started work in 1985 don't meet the selection criteria specified in the
program WHERE clause.

Path code:

SELECT FOR FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT

OBTAIN EACH DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

WHERE START-DATE-�415 > '851231'.

Program request:

OBTAIN FIRST EMP-INFO-LR

WHERE DEPT-ID-�41� EQ '52��'

AND START-DATE-�415 > '861231'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-INFO-LR

WHERE DEPT-ID-�41� EQ '52��'

AND START-DATE-�415 > '861231'.

 END

DISPLAY.

10-12 CA-IDMS Logical Record Facility

10.3 Using the EVALUATE command

10.3 Using the EVALUATE command

You use the EVALUATE command to determine whether a specified boolean
expression is true or false, and to allow specific path logic to be performed on the
basis of this evaluation.

How it differs from WHERE: The EVALUATE command differs from the path
WHERE clause in the following ways:

■ The selection criteria for an EVALUATE command should be applied after data is
brought into program variable storage. This data can be returned to the program
whether or not the evaluation is true.

■ The EVALUATE command allows branching in the path whether or not the
specified condition is met.

■ One of the operands in each comparison must be specified as a logical-record field
OF LR.

To EVALUATE a particular field, you should first OBTAIN the database record that
contains the object field. Be sure the object field is defined in a logical-record
element.

Status codes returned: LRF returns the following status codes in response to an
EVALUATE command:

■ 0000 indicates that the specified expression is true.

■ 2001 indicates that the specified expression is false.

You can use an ON clause to test for a particular status code and specify what action
should be taken. ON clauses are described in Chapter 13, “Using Role Names” on
page 13-1.

Note: You cannot issue an EVALUATE command for a group-level element in an
IDD work record. To evaluate a group-level element in an IDD work record,
you must first redefine this element by using the COMPUTE statement. This
procedure is described in Chapter 12, “Manipulating Logical-Record Data” on
page 12-1.

Examples: This path returns employee and job information for each employee who
is underpaid.

Chapter 10. Specifying Selection Criteria for Logical Records 10-13

10.3 Using the EVALUATE command

Path code:

SELECT FOR KEYWORD UNDERPAID

OBTAIN EACH EMPOSITION WITHIN EMP-DEMO-REGION

WHERE SALARY-GRADE-�42� EQ '21'

EVALUATE SALARY-AMOUNT-�42� OF LR LT 2����

ON ���� DO

OBTAIN OWNER EMPLOYEE WITHIN EMP-EMPOSITION

FIND CURRENT EMPOSITION

IF JOB-EMPOSITION MEMBER

ON ���� NEXT

ON 16�1 ITERATE

OBTAIN OWNER JOB WITHIN JOB-EMPOSITION

 END

ON 2��1 ITERATE.

Program request:

OBTAIN FIRST JOB-LR

 WHERE UNDERPAID.

ON LR-FOUND

 REPEAT.

 PUT DETAIL

OBTAIN NEXT JOB-LR

 WHERE UNDERPAID.

 END.

DISPLAY.

This path lists employee, expertise, and skill information for all employees in a
particular department who are experts in at least one skill.

10-14 CA-IDMS Logical Record Facility

10.3 Using the EVALUATE command

Path code:

SELECT FOR FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

OBTAIN EACH EXPERTISE WITHIN EMP-EXPERTISE

EVALUATE SKILL-LEVEL-�425 OF LR EQ '�4'

ON ���� DO

OBTAIN OWNER SKILL WITHIN SKILL-EXPERTISE

 END

ON 2��1 ITERATE.

Program request:

MOVE INPUT-DEPT-ID TO DEPT-ID-�44�.

OBTAIN FIRST SKILL-LR

WHERE DEPT-ID-�41� EQ DEPT-ID-�41� OF LR.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT SKILL-LR

WHERE DEPT-ID-�41� EQ DEPT-ID-�41� OF LR.

 END.

DISPLAY.

Chapter 10. Specifying Selection Criteria for Logical Records 10-15

10-16 CA-IDMS Logical Record Facility

Chapter 11. Controlling Path Execution

11.1 Introduction . 11-3
11.2 Using the ON clause . 11-4
11.3 Executing the next path-DML command 11-7
11.4 Branching within a path . 11-9
11.5 Iterating a path . 11-11

11.5.1 Path iteration logic . 11-11
11.5.2 Triggering iteration from the program 11-12
11.5.3 Triggering iteration from the path 11-15

11.6 Returning control to the program . 11-18
11.6.1 Using system-defined path statuses 11-18
11.6.2 Using DBA-defined path statuses 11-19
11.6.3 Partial and complete logical records 11-19

Chapter 11. Controlling Path Execution 11-1

11-2 CA-IDMS Logical Record Facility

11.1 Introduction

 11.1 Introduction

You can control the order in which LRF executes path-DML statements by coding an
ON clause. This clause checks for a particular DBMS status code and indicates what
action should be taken if that status code is found. With an ON clause, you can direct
LRF to do any of the following:

■ Execute the next path-DML statement

■ Branch within the path

■ Iterate a path

■ Return control to the program

Each of these options is described below, following a detailed discussion of the ON
clause.

Chapter 11. Controlling Path Execution 11-3

11.2 Using the ON clause

11.2 Using the ON clause

To use the ON clause, you specify a DBMS status code and indicate what action
should be taken if the DBMS returns that status code. The following table shows the
format of this clause. An ON clause consists of a DBMS status code followed by a
path processing request. This request is executed if the DBMS returns the indicated
status code.

Automatically-generated ON clauses: The subschema compiler automatically
generates ON clauses for all path-DML commands. You can override these ON
clauses by coding ON clauses explicitly. If the DBMS returns a status code for which
an ON clause is not present, LRF terminates path execution and returns a path status
of LR-ERROR to the program.

The following table lists the ON clauses that the subschema compiler generates
automatically for each path command.

ON clause Requested action

ON status-code NEXT Tells LRF to execute the next command in the
path.

ON status-code DO/END Tells LRF to execute the block of path
DML-commands that are nested within the ON
clause. This block of commands can itself include
one or more nested blocks of commands. LRF
permits up to 32 levels of nested DO/END blocks.

ON status-code ITERATE Tells LRF to reexecute the most recent,
successfully executed, iterable path command. A
path command is iterable if it contains an EACH
option.

If there is no successfully executed, iterable path
command, LRF returns a path status of
LR-NOT-FOUND to the program.

ON status-code [CLEAR]
 RETURN path-status

Tells LRF to interrupt path processing and return a
particular path status to the requesting program.
CLEAR directs LRF to set the contents of program
variable storage to low values. If you do not
specify CLEAR, the contents of program variable
storage are available to the application program.

11-4 CA-IDMS Logical Record Facility

11.2 Using the ON clause

Example: The following example shows a path whose ON clauses are generated
automatically by the subschema compiler. This path obtains employee, department,
and office information for a particular employee. The ON clauses are generated
automatically when the path is compiled.

Path command Default ON clauses

FIND/OBTAIN WHERE DBKEY
FIND/OBTAIN WHERE CALCKEY
FIND/OBTAIN WITHIN SET
 WHERE SORTKEY
FIND/OBTAIN EACH USING INDEX

ON 0000 NEXT
ON 0326 ITERATE

FIND/OBTAIN WITHIN SET/AREA ON 0000 NEXT
ON 0307 ITERATE

IF SET EMPTY
IF SET MEMBER

ON 0000 NEXT
ON 1601 ITERATE

IF NOT EMPTY
IF NOT MEMBER

Note: The NOT affects only the subschema
compiler in generating a different flow of
control.

ON 0000 ITERATE
ON 1601 NEXT

COMPUTE
CONNECT
DISCONNECT
ERASE
FIND/OBTAIN CURRENT
FIND/OBTAIN OWNER WITHIN SET
GET
KEEP
MODIFY
STORE

ON 0000 NEXT

EVALUATE ON 0000 NEXT
ON 2001 ITERATE

Chapter 11. Controlling Path Execution 11-5

11.2 Using the ON clause

SELECT FOR FIELDNAME-EQ EMP-ID-�415

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

ON ���� NEXT

ON �326 ITERATE

IF DEPT-EMPLOYEE MEMBER

ON ���� NEXT

ON 16�1 ITERATE

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

FIND CURRENT EMPLOYEE

ON ���� NEXT

IF OFFICE-EMPLOYEE MEMBER

ON ���� NEXT

ON 16�1 ITERATE

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT.

The following example shows the same path with some DBA-defined ON clauses.
This path is similar to the one above, except that it contains some DBA-defined ON
clauses. The DBA-defined ON clauses are shaded.

SELECT FOR FIELDNAME-EQ EMP-ID-�415

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

ON ���� NEXT

ON �326 ITERATE

IF DEPT-EMPLOYEE MEMBER

ON ���� NEXT

ON 16�1 RETURN NO-DEPT
OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

FIND CURRENT EMPLOYEE

ON ���� NEXT

IF OFFICE-EMPLOYEE MEMBER

ON ���� NEXT

ON 16�1 RETURN NO-OFFICE
OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT.

11-6 CA-IDMS Logical Record Facility

11.3 Executing the next path-DML command

11.3 Executing the next path-DML command

What it does: The ON...NEXT clause directs LRF to process the next command in
the path. If LRF encounters another ON clause, it ignores that clause and goes on to
execute the next command. If LRF has successfully executed the last command in the
path when it encounters an ON...NEXT clause, LRF returns a path status of
LR-FOUND to the program.

The following example illustrates how to use the ON...NEXT clause. In this example,
the path returns department and employee information for all employees whose status
is '04' (on leave). Note that the ON clauses in this example are generated
automatically by the subschema compiler.

Path code:

SELECT FOR KEYWORD ON-LEAVE

OBTAIN EACH EMPLOYEE WITHIN EMP-DEMO-REGION

WHERE STATUS-�415 EQ '�4'

ON ���� NEXT

ON �3�7 ITERATE

IF DEPT-EMPLOYEE MEMBER

ON ���� NEXT

ON 16�1 ITERATE

OBTAIN OWNER DEPARTMENT WITHIN DEPT-EMPLOYEE

ON ���� NEXT.

Program request:

Chapter 11. Controlling Path Execution 11-7

11.3 Executing the next path-DML command

OBTAIN FIRST DEPT-LR

 WHERE ON-LEAVE.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT DEPT-LR

 WHERE ON-LEAVE.

 END.

DISPLAY.

11-8 CA-IDMS Logical Record Facility

11.4 Branching within a path

11.4 Branching within a path

ON...DO/END clause: You may want LRF to execute one or more path-DML
commands only under certain conditions, based on the status code returned when a
previous command is executed. You can do this by placing the path-DML commands
within an ON...DO/END clause. If the DBMS returns the status code specified in the
ON...DO/END clause, LRF processes the block of commands included in this
statement.

In some cases you may want to implement a multiple-alternative decision structure in a
path. To implement this type of structure, you would code two or more
ON...DO/END clauses and associate each of these clauses with a different status code.

Example: The example below illustrates how to use the ON...DO/END clause to
branch within a path. In this example, the path returns the following information:

■ For all employees assigned to a department and an office, the path returns
employee, department, and office information.

■ For all employees assigned to an office but not to a department, the path returns
employee and office information.

■ For all employees assigned to a department but not to an office, the path returns
employee and department information.

The path returns no information for an employee who is not assigned to a department
and an office.

Path code:

Chapter 11. Controlling Path Execution 11-9

11.4 Branching within a path

SELECT FOR KEYWORD ALL-EMP

OBTAIN EACH EMPLOYEE WITHIN EMP-DEMO-REGION

IF DEPT-EMPLOYEE MEMBER

ON ���� DO

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

FIND CURRENT EMPLOYEE

IF OFFICE-EMPLOYEE MEMBER

ON ���� DO

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

 END

ON 16�1 NEXT

 END

ON 16�1 DO

IF OFFICE-EMPLOYEE MEMBER

ON ���� DO

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

 END

ON 16�1 ITERATE

 END.

Program request:

OBTAIN FIRST EMP-LR

 WHERE ALL-EMP.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-LR

 WHERE ALL-EMP.

 END.

DISPLAY.

11-10 CA-IDMS Logical Record Facility

11.5 Iterating a path

11.5 Iterating a path

What iteration is: Path iteration is the process by which LRF reexecutes a block of
code. LRF iterates a path when it performs the following activities:

■ Walks a set

■ Sweeps an area

■ Accesses database record occurrences that contain duplicate CALC key or sort key
values

When is a command iterable: A command is iterable only if it specifies the
EACH option. LRF recognizes this option as the beginning of iterative code. The
iterable commands are:

■ FIND/OBTAIN EACH WHERE CALCKEY

■ FIND/OBTAIN EACH WHERE SORTKEY

■ FIND/OBTAIN EACH USING INDEX

■ FIND/OBTAIN EACH WITHIN SET/AREA

There are three events that can trigger iteration within a path:

■ The use of NEXT in a program request

■ An unsuccessful attempt to meet program WHERE clause selection criteria

■ An ON...ITERATE clause in the path

The logic of path iteration is described below, followed by separate discussions on
triggering path iteration from a program and from a path.

11.5.1 Path iteration logic

Path iteration occurs in a cycle that involves the following steps:

1. LRF locates the last successfully executed iterable command in the path. This
is called the iteration point. If no iterable command exists, LRF terminates
processing and returns an LR-NOT-FOUND path status to the program.

2. LRF passes the located command to the DBMS.

 3. The DBMS:

a. Reexecutes the command, based on the currencies established by the
previous execution of the command.

b. Places the new database record occurrence into the appropriate area of
program variable storage if the iterable command is an OBTAIN command.
This overlays the data placed there during the previous execution of the path.

Chapter 11. Controlling Path Execution 11-11

11.5 Iterating a path

4. LRF passes each subsequent path-DML command to the DBMS. The DBMS
executes these commands. For any OBTAIN commands, the DBMS continues to
overlay data in program variable storage.

LRF continues to iterate the path by repeating steps 1 through 4 until it either:

■ Finds a record occurrence that meets the selection criteria specified by the
program

■ Encounters an appropriate ON...RETURN clause

■ Encounters an ON...ITERATE command, and there is nothing left to iterate

■ Encounters an ON...NEXT command that's at the end of the path

LRF automatically saves appropriate db-keys after the execution of each path retrieval,
update, or control command. When LRF enters an iteration cycle, it uses the
appropriate db-key to restore currency for the record associated with the iterable
command. For more information on currency in LRF, refer to Chapter 15, “Currency
Considerations” on page 15-1.

11.5.2 Triggering iteration from the program

The program can trigger path iteration by specifying an OBTAIN NEXT logical-record
command. This command is used when the program expects to retrieve more than one
occurrence of a logical record.

 Examples

11-12 CA-IDMS Logical Record Facility

11.5 Iterating a path

Example 1: This program request asks LRF to retrieve each occurrence of the
EMP-JOB-LR logical record. (This example assumes that each employee has only one
job.) The information returned to the program is shown below for each path iteration.

Path code:

Logical record First iteration Second
iteration

Third iteration

EMP-JOB-LR

EMPLOYEE

 EMP-ID-0415
 EMP-LAST-NAME-0415
 STATUS-0415

0119
BOWER
01

0048
TERNER
04

0023
O'HEARN
01

JOB
 JOB-ID-0440
 TITLE-0440

4023
PHOTO-
GRAPHER

3051
DATA
ENTRY
CLERK

3025
PROGRAMMER/
ANALYST

Chapter 11. Controlling Path Execution 11-13

11.5 Iterating a path

SELECT

OBTAIN EACH EMPLOYEE WITHIN EMP-DEMO-REGION

FIND FIRST EMPOSITION WITHIN EMP-EMPOSITION

IF JOB-EMPOSITION MEMBER

ON ���� NEXT

ON 16�1 ITERATE

OBTAIN OWNER JOB WITHIN JOB-EMPOSITION.

Program request:

OBTAIN FIRST EMP-JOB-LR.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

 OBTAIN NEXT-JOB-LR.

 END.

DISPLAY.

Example 2: This program request asks LRF to retrieve each occurrence of the
EMP-JOB-LR logical record for those employees who are on leave. The information
returned to the program is shown below for the first path iteration.

Path code:

SELECT

OBTAIN EACH EMPLOYEE WITHIN EMP-DEMO-REGION

FIND FIRST EMPOSITION WITHIN EMP-EMPOSITION

IF JOB-EMPOSITION MEMBER

ON ���� NEXT

ON 16�1 ITERATE

OBTAIN OWNER JOB WITHIN JOB-EMPOSITION.

Program request:

Logical record First iteration

EMP-JOB-LR

EMPLOYEE

 EMP-ID-0415
 EMP-LAST-NAME-0415
 STATUS-0415

0048
TERNER
04

JOB
 JOB-ID-0440
 TITLE-0440

3051
DATA ENTRY
 CLERK

11-14 CA-IDMS Logical Record Facility

11.5 Iterating a path

OBTAIN FIRST EMP-JOB-LR

WHERE STATUS-�415 EQ '�4'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

 OBTAIN NEXT-JOB-LR

WHERE STATUS-�415 EQ '�4'.

 END.

DISPLAY.

11.5.3 Triggering iteration from the path

You can trigger iteration from the path by using the ON...ITERATE clause. You
should trigger iteration from the path if you want to:

■ Respond to an unsuccessful execution of a path-DML command by iterating
past a record. This directs LRF to continue processing without passing control
back to the program.

■ Create a loop for erasing or modifying database record occurrences. Because
the program cannot initiate iteration for an update path, you must initiate iteration
in the path.

Chapter 11. Controlling Path Execution 11-15

11.5 Iterating a path

Example 1: Responding to an unsuccessful path-DML command execution

This path returns insurance plan information for each employee who has family
coverage. In this example, iteration is triggered from both the path and the program:

■ The path-triggered iteration reexecutes path processing when the coverage type is
not F (family) and when the specified insurance plan is not found.

■ The program-triggered iteration reexecutes path processing so the program can
receive all occurrences of the EMP-INSURANCE-LR logical record.

The ON clauses shown here are generated automatically by the subschema compiler.

Path code:

SELECT FOR KEYWORD FAMILY

OBTAIN EACH EMPLOYEE WITHIN EMP-DEMO-REGION

ON ���� NEXT

ON �3�7 ITERATE

OBTAIN EACH COVERAGE WITHIN EMP-COVERAGE

WHERE TYPE-�4�� EQ 'F'

ON ���� NEXT

ON �3�7 ITERATE

OBTAIN FIRST INSURANCE-PLAN

WHERE CALCKEY EQ INS-PLAN-CODE-�4�� OF LR

ON ���� NEXT

ON �326 ITERATE.

11-16 CA-IDMS Logical Record Facility

11.5 Iterating a path

Program request:

OBTAIN FIRST EMP-INSURANCE-LR WHERE FAMILY.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-INSURANCE-LR WHERE FAMILY.

 END.

DISPLAY.

Example 2: Creating a loop to erase database record occurrences

This path erases all EMPOSITION records within a particular EMP-EMPOSITION set
occurrence. The path-triggered iteration obtains the next EMPOSITION record after a
successful erase.

Path code:

ADD

PATH-GROUP NAME IS ERASE EMP-JOB-LR

SELECT FOR KEYWORD ERASE-EMP

FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

FIND EACH EMPOSITION WITHIN EMP-EMPOSITION

ON ���� NEXT

ON �3�7 ITERATE

 ERASE EMPOSITION

ON ���� ITERATE.

Program request:

ERASE FIRST EMP-JOB-LR

WHERE EMP-ID-�415 EQ '��5�' AND ERASE-EMP.

Chapter 11. Controlling Path Execution 11-17

11.6 Returning control to the program

11.6 Returning control to the program

LRF automatically terminates path processing and returns control to the application
program when either of the following conditions is met:

■ A logical-record request has executed successfully

■ A logical-record request cannot be processed

System-defined path status: When LRF terminates path processing, it returns a
system-defined path status to the program.

DBA-defined path status: You can direct LRF to return control to the application
before path processing is complete by defining your own path statuses. Any path
status that is not generated automatically by the subschema compiler is known as a
DBA-defined path status.

System-defined path statuses and DBA-defined path statuses are described below,
followed by a discussion of partial and complete logical records.

11.6.1 Using system-defined path statuses

Types of path system-defined path statuses: There are three system-defined
path statuses that can be returned to the program automatically when path processing
terminates:

■ LR-FOUND is returned when the logical-record request has been processed
successfully. When LR-FOUND is returned, the ERROR-STATUS field of the
IDMS communications block contains 0000. Your place in the iteration cycle is
maintained.

■ LR-NOT-FOUND is returned when the requested logical record can't be
constructed for one of the following reasons:

– There is no logical-record occurrence that satisfies the program WHERE
clause

– All occurrences of the requested logical record have already been returned

When LR-NOT-FOUND is returned, the ERROR-STATUS field of the IDMS
communications block contains 0000. Your place in the iteration cycle is lost.

■ LR-ERROR is returned when a logical-record request is issued incorrectly or
when a processing error occurs in the path. When LR-ERROR is returned, the
ERROR-STATUS field of the IDMS communications block contains one of the
following:

– A status code with a major code of 20. This usually indicates an error in the
program request.

– A status code with a major code from 00 to 19. This usually indicates an
error in the path.

Your place in the iteration cycle is lost.

11-18 CA-IDMS Logical Record Facility

11.6 Returning control to the program

The application programmer should always test for these path statuses after each
logical-record request. For information on the program logic used to test path statuses,
refer to the CA-IDMS Navigational DML Programming.

11.6.2 Using DBA-defined path statuses

You can define your own path statuses by coding an ON...RETURN clause for each
appropriate DBMS status code. When LRF returns a DBA-defined path status, the
ERROR-STATUS field of the IDMS communications block contains 0000. Your
place in the iteration cycle is maintained.

Defining your own path statuses can be advantageous if you use the path statuses to:

■ Inform the program that LRF is returning a partial logical record. Partial
logical records are discussed later in this chapter.

■ Distinguish between the two cases of LR-NOT-FOUND. To do this, you can:

– Inform the program that a required database record is missing

– Inform the program that all logical-record occurrences have already been
retrieved

The use of DBA-defined LRF path statuses can result in bind errors during deadlock
handling in CA-ADS. If an LRF subschema path detects a deadlock condition and
returns a DBA-defined path status to the CA-ADS dialog which issued the LR request,
the error status field is initialized to '0000'. The CA-ADS deadlock handling logic
issues an automatic re-bind of the run unit on the next functional DML request, only
when the error status minor code equals '29'. Allowing the path status for deadlock
conditions to default to LR-ERROR ensures that the error status returned will be
'XX29'.

11.6.3 Partial and complete logical records

LRF always tries to construct a complete logical record when processing a path to
retrieve a logical-record occurrence. To do this, LRF returns data for all of the
logical-record elements, as specified by the path. If LRF succeeds in constructing a
complete logical record, it returns an LR-FOUND path status to the program.

At times, a path retrieves a logical-record occurrence for which some of the
logical-record elements are not in the database. If LRF cannot construct a complete
logical record, it returns a status of LR-NOT-FOUND or LR-ERROR, along with a
partial logical record. A partial logical record contains data only for those
logical-record elements that LRF was able to retrieve (if any).

Considerations: The following considerations apply to partial and complete logical
records:

■ If you want a program to access a partial logical record, you should code your
own path status. This status can perform the following functions:

– Alert the program that a partial logical record is being returned.

Chapter 11. Controlling Path Execution 11-19

11.6 Returning control to the program

– Describe the partial logical record. This way, the program can execute
different code, depending on the type of data returned.

■ If a partial logical record is returned to the program, new values for some
logical-record fields are not placed in program variable storage. As a result, these
fields may contain data that is left over from a previous database record retrieval.

There are two ways to ensure that data in the logical record area of program
variable storage is accurate:

– If you want the programmer to have access to a partial logical record,
you can initialize the unused portions of the logical record by using the
COMPUTE command. This command is described in Chapter 12,
“Manipulating Logical-Record Data” on page 12-1.

– If you want the programmer to have access to a complete logical record
only, you can direct LRF to clear the logical-record area of program variable
storage when a complete logical record cannot be returned. You can do this
by:

— Specifying ON LR-NOT-FOUND CLEAR and ON LR-ERROR CLEAR
in the LOGICAL RECORD DDL statement, as described in Chapter 4,
“Starting to Define the Subschema” on page 4-1

— Coding a DBA-defined path status that includes the CLEAR option

11-20 CA-IDMS Logical Record Facility

11.6 Returning control to the program

 Examples

Example 1: Allowing access to partial logical records

This path lists employee, skill, and expertise information for each employee who is an
expert in a particular skill. If the skill does not have any experts, LRF returns a partial
logical record that contains skill information only and a path status of NO-EXPERTS.

This path uses the COMPUTE command to clear the unused portions of the logical
record. The contents of program variable storage are shown below for each of the
following skill names:

 ■ COBOL

 ■ GEN LEDGER

Contents of variable storage for COBOL

Chapter 11. Controlling Path Execution 11-21

11.6 Returning control to the program

Logical record First
iteration

Second
iteration

Third
iteration

Fourth
iteration

EMP-SKILL-LR

SKILL

 SKILL-NAME-0455
 SKILL-ID-0455

COBOL
2010

COBOL
2010

COBOL
2010

COBOL
2010

EXPERTISE
 SKILL-LEVEL-0425
 EXPERTISE-DATE-0425

04
720128

04
700525

04
611230

04
611230

EMPLOYEE
 EMP-ID-0415
 EMP-NAME-0415

0024
JANE
DOUGH

0003
JENNIFER
GARLAND

0001
JOHN
RUPEE

0001
JOHN RUPEE

PATH STATUS LR-
FOUND

LR-FOUND LR-FOUND NO-MORE-
 EXPERTS

Contents of variable storage for skill GEN LEDGER

Path code:

Logical record First iteration

EMP-SKILL-LR

SKILL

 SKILL-NAME-0455
 SKILL-ID-0455

GEN LEDGER
4490

EXPERTISE
 SKILL-LEVEL-0425
 EXPERTISE-DATE-0425

00
000000

EMPLOYEE
 EMP-ID-0415
 EMP-NAME-0415

0000

PATH STATUS NO-EXPERTS

11-22 CA-IDMS Logical Record Facility

11.6 Returning control to the program

SELECT USING SKILL-NAME-NDX FOR FIELDNAME-EQ SKILL-NAME-�455 OF SKILL

OBTAIN EACH SKILL USING INDEX

ON ���� NEXT

ON �326 ITERATE

OBTAIN EACH EXPERTISE WITHIN SKILL-EXPERTISE

WHERE SKILL-LEVEL-�425 EQ '�4'

ON ���� NEXT

ON �3�7 DO

EVALUATE SKILL-LEVEL-�425 EQ '�4'

ON ���� RETURN NO-MORE-EXPERTS

ON 2��1 DO

COMPUTE SKILL-LEVEL-�425 OF LR EQ '�'

ON ���� NEXT

COMPUTE EXPERTISE-DATE-�425 OF LR EQ '�'

ON ���� NEXT

COMPUTE EMP-ID-�415 OF LR EQ '�'

ON ���� NEXT

COMPUTE EMP-NAME-�415 OF LR EQ ' '

ON ���� RETURN NO-EXPERTS

 END

 END

OBTAIN OWNER EMPLOYEE WITHIN EMP-EXPERTISE.

Program request:

MOVE INPUT SKILL-NAME TO SKILL-NAME-�425.

OBTAIN FIRST SKILL-LR

WHERE SKILL-NAME-�455 EQ SKILL-NAME-�425 OF LR.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT SKILL-LR

WHERE SKILL-NAME-�425 EQ SKILL-NAME-�425 OF LR.

 END.

ON NO-EXPERTS

DISPLAY MSG TEXT IS 'NO EXPERTS FOR THIS SKILL'.

ON NO-MORE-EXPERTS

DISPLAY MSG TEXT IS 'NO MORE EXPERTS FOR THIS SKILL'.

Example 2: Allowing access to complete logical records only method 1

This path also lists employee, skill, and expertise information for each employee who
is an expert in a particular skill. If the skill does not have any experts, LRF returns a
DBA-defined return code of LR-NOT-FOUND but does not return any logical-record
data.

This path specifies a clear option to ensure that only complete logical records are
returned to the program. The contents of program variable storage are shown below
for the COBOL and GEN LEDGER skill names.

Contents of variable storage for skill COBOL

Chapter 11. Controlling Path Execution 11-23

11.6 Returning control to the program

Logical record First
iteration

Second
iteration

Third
iteration

Fourth
iteration

EMP-SKILL-LR

SKILL

 SKILL-NAME-0455
 SKILL-ID-0455

COBOL
2010

COBOL
2010

COBOL
2010

EXPERTISE
 SKILL-LEVEL-0425
 EXPERTISE-DATE-0425

04
720128

04
700525

04
611230

EMPLOYEE
 EMP-ID-0415
 EMP-NAME-0415

0024
JANE DOUGH

0003
JENNIFER
GARLAND

0001
JOHN RUPEE

PATH STATUS

LR-FOUND LR-FOUND LR-FOUND NO-MORE-
EXPERTS

Contents of variable storage for skill GEN LEDGER

Path code:

Logical record First iteration

EMP-SKILL-LR

SKILL

 SKILL-NAME-0455
 SKILL-ID-0455

EXPERTISE
 SKILL-LEVEL-0425
 EXPERTISE-DATE-0425

EMPLOYEE
 EMP-ID-0415
 EMP-NAME-0415

PATH STATUS LR-NOT-FOUND

11-24 CA-IDMS Logical Record Facility

11.6 Returning control to the program

ADD

LOGICAL RECORD NAME IS EMP-SKILL-LR

 ELEMENTS ARE

 SKILL

 EXPERTISE

 EMPLOYEE

ON LR-ERROR CLEAR

ON LR-NOT-FOUND CLEAR

 .

 .

 .

ADD

PATH GROUP NAME IS OBTAIN EMP-SKILL-LR

SELECT USING SKILL-NAME-NDX FOR FIELDNAME-EQ SKILL-NAME-�455

 OF SKILL

OBTAIN EACH SKILL USING INDEX

ON ���� NEXT

ON �326 ITERATE

OBTAIN EACH EXPERTISE WITHIN SKILL-EXPERTISE

WHERE SKILL-LEVEL-�425 EQ '�4'

ON ���� NEXT

ON �3�7 RETURN LR-NOT-FOUND

OBTAIN OWNER EMPLOYEE WITHIN EMP-EXPERTISE

ON ���� NEXT.

Program request:

MOVE INPUT SKILL-NAME TO SKILL-NAME-�425.

OBTAIN FIRST SKILL-LR

WHERE SKILL-NAME-�455 EQ SKILL-NAME-�425 OF LR.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT SKILL-LR

WHERE SKILL-NAME-�425 EQ SKILL-NAME-�425 OF LR.

 END.

ON LR-NOT-FOUND

DISPLAY MSG TEXT IS 'NO MORE EXPERTS FOR THIS SKILL'.

Example 3: Allowing access to complete logical records only method 2

Like the paths described above, this path lists employee, skill, and expertise
information for each employee who is an expert in a particular skill. If the skill does
not have any experts, LRF returns a DBA-defined return code of NO-EXPERTS but
does not return any logical-record data.

This path specifies an ON..CLEAR..RETURN option to ensure that only complete
logical records are returned to the program. The contents of program variable storage
are shown below for the COBOL and GEN LEDGER skill names.

Contents of variable storage for skill COBOL

Chapter 11. Controlling Path Execution 11-25

11.6 Returning control to the program

Logical record First
iteration

Second
iteration

Third
iteration

Fourth
iteration

EMP-SKILL-LR

SKILL

 SKILL-NAME-0455
 SKILL-ID-0455

COBOL
2010

COBOL
2010

COBOL
2010

EXPERTISE
 SKILL-LEVEL-0425
 EXPERTISE-DATE-0425

04
720128

04
700525

04
611230

EMPLOYEE
 EMP-ID-0415
 EMP-NAME-0415

0024
JANE DOUGH

0003
JENNIFER
GARLAND

0001
JOHN RUPEE

PATH STATUS LR-FOUND LR-FOUND LR-FOUND NO-MORE-
 EXPERTS

Contents of variable storage for skill GEN LEDGER

Path code:

Logical record First iteration

EMP-SKILL-LR

SKILL

 SKILL-NAME-0455
 SKILL-ID-0455

EXPERTISE
 SKILL-LEVEL-0425
 EXPERTISE-DATE-0425

EMPLOYEE
 EMP-ID-0415
 EMP-NAME-0415

PATH STATUS NO-EXPERTS

11-26 CA-IDMS Logical Record Facility

11.6 Returning control to the program

ADD

LOGICAL RECORD NAME IS EMP-SKILL-LR

 ELEMENTS ARE

 SKILL

 EXPERTISE

 EMPLOYEE

 .

 .

 .

ADD

PATH GROUP NAME IS OBTAIN EMP-SKILL-LR

SELECT USING SKILL-NAME-NDX FOR FIELDNAME-EQ SKILL-NAME-�455

 OF SKILL

OBTAIN EACH SKILL USING INDEX

ON ���� NEXT

ON �326 ITERATE

OBTAIN EACH EXPERTISE WITHIN SKILL-EXPERTISE

WHERE SKILL-LEVEL-�425 EQ '�4'

ON ���� NEXT

ON �3�7 DO

EVALUATE SKILL-LEVEL-�425 EQ '�4'

ON ���� CLEAR RETURN NO-MORE-EXPERTS

ON 2��1 CLEAR RETURN NO-EXPERTS

 END

OBTAIN OWNER EMPLOYEE WITHIN EMP-EXPERTISE

ON ���� NEXT.

Program request:

MOVE INPUT SKILL-NAME TO SKILL-NAME-�425.

OBTAIN FIRST SKILL-LR

WHERE SKILL-NAME-�455 EQ SKILL-NAME-�425 OF LR.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT SKILL-LR

WHERE SKILL-NAME-�425 EQ SKILL-NAME-�425 OF LR.

 END.

ON NO-EXPERTS

DISPLAY MSG TEXT IS 'NO EXPERTS FOR THE SKILL'.

ON NO-MORE-EXPERTS

DISPLAY MSG TEXT IS 'NO MORE LOGICAL-RECORD OCCURRENCES'.

Chapter 11. Controlling Path Execution 11-27

11-28 CA-IDMS Logical Record Facility

Chapter 12. Manipulating Logical-Record Data

12.1 The COMPUTE command . 12-3
12.1.1 Examples . 12-3

Chapter 12. Manipulating Logical-Record Data 12-1

12-2 CA-IDMS Logical Record Facility

12.1 The COMPUTE command

12.1 The COMPUTE command

What COMPUTE does: You can manipulate logical-record data by using the
COMPUTE command. This command lets you:

■ Copy data from one logical-record field to another logical-record field

■ Set the value of a logical-record field equal to a literal or an arithmetic expression

The COMPUTE command is issued as a boolean expression that contains an equality
operation. The following table shows the general format of this command. This
command is formed by using one first operand, one conditional operator, and one
second operand.

Uses of the COMPUTE command: You can use the COMPUTE command to do
any of the following:

■ Initialize a logical-record field that will be used as a sort key or CALC key for a
subsequent FIND/OBTAIN command

■ Prepare a database record occurrence to be stored or modified

■ Count record occurrences and cumulate totals

■ Change a group-level field into an element-level field

■ Initialize unused fields when a partial logical record is returned

■ Return path information to the program

First operand Conditional
operator

Second operand

Logical-record field name
 OF LR

EQ (IS) (=) Alphanumeric or numeric
 literal

Logical-record field name
 OF LR

Arithmetic expression

 12.1.1 Examples

Initializing a field to be used as a sort key

Chapter 12. Manipulating Logical-Record Data 12-3

12.1 The COMPUTE command

This path retrieves information for all jazz albums that were made by a particular
musician. It retrieves the appropriate ALBUM records by using a concatenated sort
key. The sort key is built in the path and contains the following information:

■ A MUSIC-TYPE of JAZZ

■ An ARTIST-ID that is passed through the program WHERE clause

The path constructs this key by using the COMPUTE command to move values into
an IDD-defined work field. The work field is shown below:

�1 WORK-KEY.

 �2 WORK-MUSIC-TYPE PIC X(2�).

 �2 WORK-ARTIST-ID PIC 9(4).

Path code:

SELECT FOR FIELDNAME-EQ ARTIST-ID OF ARTIST

 KEYWORD JAZZ

COMPUTE WORK-MUSIC-TYPE OF LR EQ 'JAZZ'

FIND FIRST ARTIST

WHERE CALCKEY EQ ARTIST-ID OF ARTIST OF REQUEST

COMPUTE WORK-ARTIST-ID OF LR EQ ARTIST-ID OF ARTIST OF LR

OBTAIN EACH ALBUM

WHERE SORTKEY EQ WORK-KEY OF LR.

Program request:

MOVE INPUT-ARTIST TO ARTIST-ID OF ARTIST.

OBTAIN FIRST MUSIC-LR

WHERE (ARTIST-ID OF ARTIST EQ ARTIST-ID OF ARTIST OF LR)

 AND JAZZ.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT MUSIC-LR

WHERE (ARTIST-ID OF ARTIST EQ ARTIST-ID OF ARTIST OF LR)

 AND JAZZ.

 END.

DISPLAY

Preparing a database record to be modified

12-4 CA-IDMS Logical Record Facility

12.1 The COMPUTE command

This path modifies all EMPLOYEE records whose zip code is '01118' and who live in
the city of Springfield. The path changes the zip code to '01119' for these record
occurrences:

Path code:

ADD

PATH-GROUP NAME IS MODIFY EMP-ADDRESS-LR

SELECT FOR KEYWORD NEW-ZIP

OBTAIN EACH EMPLOYEE WITHIN EMP-NAME-NDX

WHERE (EMP-ZIP-�415 EQ '�1118')

AND (EMP-CITY-�415 EQ 'SPRINGFIELD')

COMPUTE EMP-ZIP-�415 OF LR EQ '�1119'

 MODIFY EMPLOYEE

ON ���� ITERATE.

Program request:

MODIFY EMP-ADDRESS-LR

 WHERE NEW-ZIP.

Providing counter activity

Chapter 12. Manipulating Logical-Record Data 12-5

12.1 The COMPUTE command

This path cumulates salary totals for all employees who work in a specified
department.

Path code:

SELECT FOR FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT

COMPUTE WORK-SALARY OF LR EQ �

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

ON ���� DO

OBTAIN FIRST EMPOSITION WITHIN EMP-EMPOSITION

ON ���� DO

COMPUTE WORK-SALARY-AMOUNT OF LR EQ

(WORK-SALARY-AMOUNT OF LR + SALARY-AMOUNT-�42� OF LR)

ON ���� ITERATE

 END

ON �3�7 ITERATE

 END.

Program request:

OBTAIN FIRST TOTAL-SALARY-LR

WHERE DEPT-ID-�41� EQ '32��'.

Changing group-level fields into element-level fields

12-6 CA-IDMS Logical Record Facility

12.1 The COMPUTE command

This path increases the bonus percentage for each employee who has been with the
company since April 31, 1985. The path uses a COMPUTE command to copy the
value of START-DATE-0415 (a group-level field) into WORK-START-DATE (an
element-level IDD-defined work field). The path then evaluates
WORK-START-DATE to select the appropriate employees.

Path code:

SELECT FOR KEYWORD BONUS-REVIEW

OBTAIN EACH EMPLOYEE WITHIN EMP-DEMO-REGION

COMPUTE WORK-START-DATE OF LR EQ START-DATE-�415 OF LR

EVALUATE WORK-START-DATE LE '85�431'

ON ���� DO

OBTAIN EACH EMPOSITION WITHIN EMP-EMPOSITION

ON �3�7 ITERATE.

COMPUTE BONUS-PERCENT-�42� OF LR EQ

(BONUS-PERCENT-�42� OF LR � 1.25)

 MODIFY EMPOSITION

ON ���� ITERATE.

 END

ON 2��1 ITERATE

Program request:

MODIFY EMP-LR WHERE BONUS-REVIEW.

DISPLAY.

Initializing unused fields

Chapter 12. Manipulating Logical-Record Data 12-7

12.1 The COMPUTE command

This path lists employee, skill, and expertise information for each employee who is an
expert in a particular skill. If there are no 'experts' for the skill, LRF returns a partial
logical record that contains skill information only.

The path uses the COMPUTE statement to initialize the fields in the EXPERTISE
record before the logical record is returned to the program. For information on partial
logical records, refer to Chapter 11, “Controlling Path Execution” on page 11-1.

Path code:

SELECT USING SKILL-NAME-NDX FOR FIELDNAME-EQ SKILL-NAME-�455 OF SKILL

OBTAIN EACH SKILL USING INDEX

OBTAIN EACH EXPERTISE WITHIN SKILL-EXPERTISE

WHERE SKILL-LEVEL-�425 EQ '�4'

ON ���� DO

OBTAIN OWNER EMPLOYEE

 END

ON �3�7 DO

COMPUTE SKILL-LEVEL-�425 OF LR EQ '�'

COMPUTE EXPERTISE-DATE-�425 OF LR EQ '�'

COMPUTE EMP-ID-�415 OF LR EQ '�'

COMPUTE EMP-NAME-�415 OF LR EQ ' '

 END

Program request:

MOVE INPUT-SKILL-NAME TO SKILL-NAME-�425.

OBTAIN FIRST SKILL-LR

WHERE SKILL-NAME-�455 EQ 'CODING'

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT SKILL-LR

WHERE SKILL-NAME-�425 EQ SKILL-NAME OF LR.

 END.

DISPLAY.

Returning path information to the program

12-8 CA-IDMS Logical Record Facility

12.1 The COMPUTE command

This path returns information to the program that indicates which path was executed.
The path returns this information through an IDD-defined work record. It uses the
COMPUTE command to set the value of this work record.

Path code:

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

COMPUTE WORK-MESSAGE EQ 'EMP-ID PATH'

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST.

Program request:

OBTAIN FIRST EMP-LR

WHERE EMP-ID-�415 EQ '��15'.

Chapter 12. Manipulating Logical-Record Data 12-9

12-10 CA-IDMS Logical Record Facility

Chapter 13. Using Role Names

13.1 Role names . 13-3
13.1.1 Examples . 13-3

Chapter 13. Using Role Names 13-1

13-2 CA-IDMS Logical Record Facility

13.1 Role names

 13.1 Role names

What is a role name: You can direct LRF to return two or more occurrences of a
single database record type or IDD-defined work record type simultaneously. You do
this by assigning unique identifiers to the logical-record elements. These identifiers
are called role names.

Each logical-record element can have any number of role names. LRF reserves
additional space in program variable storage for each role name that you assign.

Suppose, for example, that you want to reserve space in program variable storage for
two occurrences of a record. To do this, you can either:

■ Define one role name for the logical-record element. You then refer to the
element by either the role name or the record name.

■ Define two role names for the logical-record element. You then refer to the
element by its role names only.

Considerations: The following considerations apply to the use of roles names:

■ Once you assign role names to a logical-record element, you must always qualify
that element with one of its role names. This holds true for both the path code
and the program request.

■ A role name cannot be the name of:

– A record or record synonym defined in the schema

– A field name included in the current subschema

– A keyword used in the current subschema

■ Each role name can be assigned to only one record type per subschema. The role
name can be assigned to that record type in any number of logical records within
the subschema.

■ LRF does not keep separate currencies for each role name specified, except during
an iteration cycle. If you issue a path database update command with a role
name, LRF updates the record occurrence that is current of record type.

At the end of path execution, currency for the logical-record element will reflect
the last record occurrence accessed, regardless of the role name used. For more
information on currency in LRF, refer to Chapter 15, “Currency Considerations”
on page 15-1.

 13.1.1 Examples

Processing a bill of materials structure (using two role names)

Chapter 13. Using Role Names 13-3

13.1 Role names

This path retrieves the names and ids of all employees who work for a particular
manager. The EMPLOYEE record is represented by two role names: MANAGER
and WORKER. Thus, you can access the EMPLOYEE record by specifying either
MANAGER or WORKER.

Because the EMP-ID-0415 field is not unique in the EMP-EMP-LR logical record, you
must qualify it with the MANAGER or WORKER role names.

Path code:

ADD

LOGICAL RECORD NAME IS EMP-EMP-LR

 ELEMENTS ARE

EMPLOYEE ROLE IS MANAGER

EMPLOYEE ROLE IS WORKER

 .

 .

 .

ADD

PATH-GROUP NAME IS OBTAIN EMP-EMP-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF MANAGER

OBTAIN FIRST MANAGER

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

ON ���� NEXT

ON �326 ITERATE

FIND EACH STRUCTURE WITHIN MANAGES

ON ���� NEXT

ON �3�7 ITERATE

OBTAIN OWNER WORKER WITHIN REPORTS-TO

ON ���� NEXT.

Program request:

13-4 CA-IDMS Logical Record Facility

13.1 Role names

OBTAIN FIRST EMP-EMP-LR

WHERE EMP-ID-�415 OF MANAGER EQ '��15'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-EMP-LR

WHERE EMP-ID-�415 OF MANAGER EQ '��15'.

 END.

DISPLAY.

Processing a bill of materials structure (using one role name)

This path also retrieves the names and ids of all employees who work for a particular
manager. The EMPLOYEE record has only one role name assigned to it: WORKER.
Thus, you can access the EMPLOYEE record by specifying either EMPLOYEE or
WORKER.

Path code:

Chapter 13. Using Role Names 13-5

13.1 Role names

ADD

LOGICAL RECORD NAME IS EMP-EMP-LR

 ELEMENTS ARE

 EMPLOYEE

EMPLOYEE ROLE IS WORKER

 .

 .

 .

ADD

PATH-GROUP NAME IS OBTAIN EMP-EMP-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

ON ���� NEXT

ON �326 ITERATE

FIND EACH STRUCTURE WITHIN MANAGES

ON ���� NEXT

ON �3�7 ITERATE

OBTAIN OWNER WORKER WITHIN REPORTS-TO

ON ���� NEXT.

Program request:

OBTAIN FIRST EMP-EMP-LR

WHERE EMP-ID-�415 OF EMPLOYEE EQ '��15'.

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT EMP-EMP-LR

WHERE EMP-ID-�415 OF EMPLOYEE EQ '��15'.

 END.

DISPLAY.

Representing multiple skills

This path retrieves skill information for each employee who is an expert in two
particular skills. The logic of the path is as follows:

13-6 CA-IDMS Logical Record Facility

13.1 Role names

1. The path obtains the first SKILL record by using a value passed from the
program. This SKILL record is represented by the role name SKILL1.

2. The path then finds the first EXPERTISE record in the SKILL-EXPERTISE set
where the SKILL-LEVEL-0425 field has a value of 04 (expert).

3. The path obtains the owner EMPLOYEE record. This retrieves the name of the
employee who has an expertise in the named skill.

4. Now, the path searches the EMP-EXPERTISE set for an EXPERTISE record that
has a skill level of 04.

5. When the path locates an EXPERTISE record that has a skill level of 04, it goes
on to locate the owner SKILL record. This SKILL record is represented by the
role name SKILL2.

The path obtains the SKILL record if the skill name is equal to the second skill
name passed from the program. In this case, the employee is an expert in both
given skills.

If the skill name is not equal to the second skill name passed by the program, the
path continues to search the EMP-EXPERTISE set for an EXPERTISE record that
has an expertise level of 04 and is associated with the named skill.

Path code:

ADD

LOGICAL RECORD NAME IS SKILL-SKILL-LR

 ELEMENTS ARE

SKILL ROLE IS SKILL1

SKILL ROLE IS SKILL2

 EMPLOYEE

 EXPERTISE

 .

 .

 .

ADD

PATH-GROUP NAME IS OBTAIN SKILL-SKILL-LR

SELECT FOR KEYWORD EXPERTS

FIELDNAME-EQ SKILL-NAME-�455 OF SKILL1

FIELDNAME-EQ SKILL-NAME-�455 OF SKILL2

OBTAIN FIRST SKILL1 WITHIN SKILL-NAME-NDX

WHERE SORTKEY EQ SKILL-NAME-�455 OF SKILL1 OF REQUEST

ON ���� NEXT

ON �326 RETURN SKILL-NOT-FOUND

FIND EACH EXPERTISE WITHIN SKILL-EXPERTISE

WHERE SKILL-LEVEL-�425 EQ '�4'

ON ���� NEXT

ON �3�7 ITERATE

OBTAIN OWNER EMPLOYEE WITHIN EMP-EXPERTISE

ON ���� NEXT

FIND EACH EXPERTISE WITHIN EMP-EXPERTISE

WHERE SKILL-LEVEL-�425 EQ '�4'

ON ���� NEXT

ON �3�7 ITERATE

OBTAIN OWNER SKILL2 WITHIN SKILL-EXPERTISE

ON ���� NEXT

ON �326 ITERATE.

Program request:

Chapter 13. Using Role Names 13-7

13.1 Role names

MOVE 'COBOL' TO SKILL-NAME-�455 OF SKILL1 OF LR

MOVE 'GEN LEDGER' TO SKILL-NAME-�455 OF SKILL2 OF LR.

OBTAIN FIRST SKILL-SKILL-LR

WHERE EXPERTS AND SKILL-NAME-�455 OF SKILL1 EQ

SKILL-NAME-�455 OF SKILL1 OF LR

AND SKILL-NAME-�455 OF SKILL2 EQ

SKILL-NAME-�455 OF SKILL2 OF LR

ON LR-FOUND

 REPEAT.

 PUT DETAIL.

OBTAIN NEXT SKILL-SKILL-LR

WHERE EXPERTS AND SKILL-NAME-�455 OF SKILL1 EQ

SKILL-NAME-�455 OF SKILL1 OF LR

AND SKILL-NAME-�455 OF SKILL2 EQ

SKILL-NAME-�455 OF SKILL2 OF LR

 END.

DISPLAY.

13-8 CA-IDMS Logical Record Facility

Chapter 14. Documenting the Subschema

14.1 Introduction . 14-3
14.2 Using the COMMENTS clause . 14-4
14.3 Running the LRDEFS report . 14-7
14.4 Running the LRPATH report . 14-12
14.5 Running the LRACT report . 14-14

Chapter 14. Documenting the Subschema 14-1

14-2 CA-IDMS Logical Record Facility

14.1 Introduction

 14.1 Introduction

Once you have finished defining a logical-record subschema, you are ready to
document how the subschema works. At this stage of the subschema definition
process, you should already have preliminary comments that list and describe the
following information for each logical record in the subschema:

■ The database records that the logical record will access

■ The DML verbs that can be issued for the logical record

■ The program selection criteria that will map to each path

For information on defining preliminary comments, refer to Chapter 4, “Starting to
Define the Subschema” on page 4-1.

At this stage, you may also want to describe:

■ The data that will be returned to the program, including the sequence of the data

■ All DBA-defined path statuses and the situations under which these path statuses
will be returned

■ Any role names associated with the logical record

The COMMENTS clause: You document a logical record by using the
COMMENTS clause of the ADD LOGICAL RECORD DDL statement. The
information you provide will be copied along with the logical record to the appropriate
area of program variable storage. You can retrieve this information either by
displaying the logical record in the subschema compiler or by running the LRDEFS
logical-record report.

The remainder of this chapter describes how to use the COMMENTS clause and how
to run the LRDEFS, LRPATH, and LRACT logical-record reports.

Chapter 14. Documenting the Subschema 14-3

14.2 Using the COMMENTS clause

14.2 Using the COMMENTS clause

To use the COMMENTS clause of the ADD LOGICAL RECORD DDL statement,
you enter as many lines of text as are necessary to document the logical record. The
following considerations apply:

■ Each line of text must start with a quote. Ending quotes are optional.

■ When text extends beyond the first line of input, each subsequent line must begin
with a character that indicates either continuation or concatenation:

– The hyphen (-) indicates that the line is a continuation of comment text.

– The plus sign (+) indicates that the line is to be appended to the previous line
of comment text.

14-4 CA-IDMS Logical Record Facility

14.2 Using the COMMENTS clause

Example: The following example shows how to code comments for the sample
EMP-INFO-LR logical record.

ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 .

 .

 .

ADD

LOGICAL RECORD NAME IS EMP-INFO-LR

 .

 .

 .

 COMMENTS

 '���'

- 'THE EMP-INFO-LR LOGICAL RECORD ACCESSES INFORMATION FROM THE'

- 'EMPLOYEE DATABASE RECORD AND ALSO ACCESSES INFORMATION'

- 'FROM THE ASSOCIATED DEPARTMENT AND OFFICE RECORDS.'

 - ' '

- 'THE FOLLOWING INFORMATION IS RETURNED TO THE PROGRAM, IN'

- 'THE ORDER SHOWN BELOW:'

 - ' '

- ' EMPLOYEE RECORD ── EMP-ID-�415, EMP-NAME-�415, START-DATE-�'

 + '415'

 - ' STATUS-�415'

 - ' '

- ' DEPARTMENT RECORD ── DEPT-ID-�44�, DEPT-NAME-�44�'

 - ' '

 - ' OFFICE RECORD ── OFFICE-CODE-�45�'

- ' PATHREC VERSION 1 ── WORK-PATH-ID'

 - ' '

- ' NOTE THAT THE WORK-PATH-ID FIELD INDICATES WHICH PATH'

 - ' WAS EXECUTED.'

 - '���'

 - ' '

- 'LR VERBS ALLOWED: OBTAIN'

 - ' '

 - '���'

 - ' '

- 'SELECTION CRITERIA (TOTAL OF FIVE PATHS)'

 - ' '

- ' OBTAIN PATH GROUP:'

 - ' '

 - ' '

Chapter 14. Documenting the Subschema 14-5

14.2 Using the COMMENTS clause

- ' PATH 1) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR ALL EMPLOYEES WHO ARE'

 - ' ON LEAVE.'

 - ' '

- ' THE PATH WILL BE SELECTED IF THE PROGRAM'

- ' REQUEST INCLUDES THE KEYWORD ON-LEAVE.'

 - ' '

- ' IF PATH 1 IS SELECTED, THE VALUE OF THE'

- ' WORK-PATH-ID FIELD WILL BE "PATH 1".'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED WITH'

 - ' A DEPARTMENT'

- ' NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO AN'

 - ' OFFICE'

 - ' '

 - ' '

- ' PATH 2) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR A PARTICULAR EMPLOYEE.'

- ' IT USES THE EMP-ID-�415 FIELD AS A'

- ' CALC KEY TO ACCESS EMPLOYEE INFORMATION.'

 - ' '

- ' THE PATH WILL BE SELECTED IF ANY OF THESE'

- ' COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE'

 - ' CLAUSE:'

 - ' '

- ' EMP-ID-�415 = A NUMERIC LITERAL'

- ' A PROGRAM VARIABLE'

- ' A FIELD IN THE LOGICAL-RECORD'

- ' AREA OF PROGRAM VARIABLE STORAGE'

 - ' '

- ' IF PATH 2 IS SELECTED, THE VALUE OF THE'

- ' WORK-PATH-ID FIELD WILL BE "PATH 2".'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' INVALID-ID ── THE INPUT EMPLOYEE ID IS INVALID'

- ' NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED WITH'

 - ' A DEPARTMENT'

- ' NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO AN'

 - ' OFFICE'

 - ' '

 .

 .

 .

14-6 CA-IDMS Logical Record Facility

14.2 Using the COMMENTS clause

14.3 Running the LRDEFS report

The LRDEFS report describes each logical record in a given subschema. This report:

■ Describes the logical-record comments

■ Lists each database record that is part of the logical record

■ Describes each field in the logical record.

You run the LRDEFS report by choosing the LRDEFS option of the IDMSRPTS
utility.

�� For instructions on running this utility, refer to CA-IDMS Utilities.

The example below shows a sample LRDEFS report for the EMPLR35 subschema.

IDMSRPTS 15.� -SUBSCHEMA LOGICAL RECORD DESCRIPTIONS- DATE TIME PAGE

LRDEFS FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VERSION 1 �4/28/99 13485� 1

LOGICAL RECORD NAME EMP-INFO-LR

 COMMENTS ���

THE EMP-INFO-LR LOGICAL RECORD ACCESSES INFORMATION FROM THE

EMPLOYEE DATABASE RECORD AND ALSO ACCESSES INFORMATION

FROM THE ASSOCIATED DEPARTMENT AND OFFICE RECORDS.

THE FOLLOWING INFORMATION IS RETURNED TO THE PROGRAM, IN

THE ORDER SHOWN BELOW:

EMPLOYEE RECORD ── EMP-ID-�415, EMP-NAME-�415, START-DATE-�415

 STATUS-�415

DEPARTMENT RECORD ── DEPT-ID-�44�, DEPT-NAME-�44�

 OFFICE RECORD ── OFFICE-CODE-�45�

PATHREC VERSION 1 ── WORK-PATH-ID

NOTE THAT THE WORK-PATH-ID FIELD INDICATES WHICH PATH

 WAS EXECUTED.

 ���

LR VERBS ALLOWED: OBTAIN

 ���

SELECTION CRITERIA (TOTAL OF FIVE PATHS)

OBTAIN PATH GROUP:

PATH 1) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND

OFFICE INFORMATION FOR ALL EMPLOYEES WHO ARE

 ON LEAVE.

THE PATH WILL BE SELECTED IF THE PROGRAM

REQUEST INCLUDES THE KEYWORD ON-LEAVE.

IF PATH 1 IS SELECTED, THE VALUE OF THE

WORK-PATH-ID FIELD WILL BE "PATH 1".

THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED

 PATH STATUSES:

NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED WITH

 A DEPARTMENT

NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO AN

 OFFICE

PATH 2) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND

OFFICE INFORMATION FOR A PARTICULAR EMPLOYEE.

IT USES THE EMP-ID-�415 FIELD AS A

Chapter 14. Documenting the Subschema 14-7

14.3 Running the LRDEFS report

IDMSRPTS 15.� -SUBSCHEMA LOGICAL RECORD DESCRIPTIONS- DATE TIME PAGE

 LRDEFS FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VERSION 1 �4/28/99 13485� 2

CALC KEY TO ACCESS EMPLOYEE INFORMATION.

THE PATH WILL BE SELECTED IF ANY OF THESE

COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE

 CLAUSE:

EMP-ID-�415 = A NUMERIC LITERAL

A PROGRAM VARIABLE

A FIELD IN THE LOGICAL-RECORD

AREA OF PROGRAM VARIABLE STORAGE

IF PATH 2 IS SELECTED, THE VALUE OF THE

WORK-PATH-ID FIELD WILL BE "PATH 2".

THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED

 PATH STATUSES:

INVALID-ID ── THE INPUT EMPLOYEE ID IS INVALID

NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED WITH

 A DEPARTMENT

NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO AN

 OFFICE

PATH 3) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND

OFFICE INFORMATION FOR EACH EMPLOYEE IN A

PARTICULAR DEPARTMENT. IT USES THE DEPT-ID-�41�

FIELD AS A CALC KEY TO ACCESS DEPARTMENT

 INFORMATION.

THE PATH WILL BE SELECTED IF ANY OF THESE

COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE

 CLAUSE:

 DEPT-ID-�44� =

 A LITERAL

A PROGRAM VARIABLE

A FIELD IN THE LOGICAL-RECORD

AREA OF PROGRAM VARIABLE STORAGE

IF PATH 3 IS SELECTED, THE VALUE OF THE

WORK-PATH-ID FIELD WILL BE "PATH 3".

THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED

 PATH STATUSES:

INVALID-DEPT ── THE INPUT DEPARTMENT ID IS INVALID

NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO AN

 OFFICE

14-8 CA-IDMS Logical Record Facility

14.3 Running the LRDEFS report

IDMSRPTS 15.� -SUBSCHEMA LOGICAL RECORD DESCRIPTIONS- DATE TIME PAGE

LRDEFS FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VERSION 1 �4/28/99 13485� 3

PATH 4) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND

OFFICE INFORMATION FOR EACH EMPLOYEE ASSIGNED TO

A PARTICULAR OFFICE.

IT USES THE OFFICE-CODE-�45� FIELD AS A CALC

KEY TO ACCESS OFFICE INFORMATION.

THE PATH WILL BE SELECTED IF ANY OF THESE

COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE

 CLAUSE:

 OFFICE-CODE-�45� =

 A LITERAL

A PROGRAM VARIABLE

A FIELD IN THE LOGICAL-RECORD

AREA OF PROGRAM VARIABLE STORAGE

IF PATH 4 IS SELECTED, THE VALUE OF THE

WORK-PATH-ID FIELD WILL BE "PATH 4".

THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED

 PATH STATUSES:

INVALID-OFFICE ── THE INPUT OFFICE CODE IS INVALID

NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED

WITH A DEPARTMENT

PATH 5) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND

OFFICE INFORMATION FOR A PARTICULAR EMPLOYEE.

IT USES THE EMP-NAME-NDX TO ACCESS EMPLOYEE

 INFORMATION.

THE PATH WILL BE SELECTED IF EITHER OF THESE

FIELDS ARE REFERENCED IN THE PROGRAM WHERE

 CLAUSE:

EMP-LAST-NAME-�415 AND EMP-FIRST-NAME-�415

 EMP-LAST-NAME-�415

IF PATH 5 IS SELECTED, THE VALUE OF THE

WORK-PATH-ID FIELD WILL BE "PATH 5".

THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED

 PATH STATUSES:

INVALID-NAME ── THE INPUT EMPLOYEE NAME IS

 INVALID

NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED

WITH A DEPARTMENT

NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO

 AN OFFICE

Chapter 14. Documenting the Subschema 14-9

14.3 Running the LRDEFS report

IDMSRPTS 15.� -SUBSCHEMA LOGICAL RECORD DESCRIPTIONS- DATE TIME PAGE

LRDEFS FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VE=SION 1 �4/28/99 13485� 4

 BUILT FROM.........

 RECORD NAME........ EMPLOYEE

RECORD ID.......... �415

RECORD VERSION..... �1��

RECORD LENGTH...... FIXED

LOCATION MODE...... CALC USING EMP-ID-�415

WITHIN............. EMP-DEMO-REGION FROM PAGE 4�132�3 THRU 4�133��

ACCESS RESTRICTION ON FOR........... ERASE

DATA ITEM.......... REDEFINES....... USAGE....... VALUE............................. PICTURE................... STRT LGTH

�2 EMP-ID-�415 DISPLAY 9(4) 1 4

SET CONTROL ITEM FOR ──────── CALC DUP NOT ALLOWED

�2 EMP-NAME-�415 DISPLAY 5 25

�3 EMP-FIRST-NAME-�415 DISPLAY X(1�) 5 1�

SET CONTROL ITEM FOR ──────── DEPT-EMPLOYEE DUP LAST

SET CONTROL ITEM FOR ──────── EMP-NAME-NDX DUP LAST

SET CONTROL ITEM FOR ──────── OFFICE-EMPLOYEE DUP LAST

�3 EMP-LAST-NAME-�415 DISPLAY X(15) 15 15

SET CONTROL ITEM FOR ──────── DEPT-EMPLOYEE DUP LAST

SET CONTROL ITEM FOR ──────── EMP-NAME-NDX DUP LAST

SET CONTROL ITEM FOR ──────── OFFICE-EMPLOYEE DUP LAST

�2 START-DATE-�415 DISPLAY 3� 6

�3 START-YEAR-�415 DISPLAY 9(2) 3� 2

�3 START-MONTH-�415 DISPLAY 9(2) 32 2

�3 START-DAY-�415 DISPLAY 9(2) 34 2

�2 STATUS-�415 DISPLAY X(2) 36 2

88 ACTIVE-�415 COND 36

 '�1'

88 ST-DISABIL-�415 COND 36

 '�2'

88 LT-DISABIL-�415 COND 36

 '�3'

88 LEAVE-OF-ABSENCE-�415 COND 36

 '�4'

88 TERMINATED-�415 COND 36

 '�5'

RECORD NAME........ DEPARTMENT

RECORD ID.......... �41�

RECORD VERSION..... �1��

RECORD LENGTH...... FIXED

LOCATION MODE...... CALC USING DEPT-ID-�41�

WITHIN............. ORG-DEMO-REGION FROM PAGE 4�13353 THRU 4�134��

IDMSRPTS 15.� -SUBSCHEMA LOGICAL RECORD DESCRIPTIONS- DATE TIME PAGE

LRDEFS FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VERSION 1 �4/28/99 13485� 5

 DATA ITEM.......... REDEFINES....... USAGE....... VALUE............................. PICTURE................... STRT LGTH

�2 DEPT-ID-�41� DISPLAY 9(4) 41 4

SET CONTROL ITEM FOR ──────── CALC DUP NOT ALLOWED

�2 DEPT-NAME-�41� DISPLAY X(45) 45 45

RECORD NAME........ OFFICE

RECORD ID.......... �45�

RECORD VERSION..... �1��

RECORD LENGTH...... FIXED

LOCATION MODE...... CALC USING OFFICE-CODE-�45�

WITHIN............. ORG-DEMO-REGION FROM PAGE 4�13353 THRU 4�134��

DATA ITEM.......... REDEFINES....... USAGE....... VALUE............................. PICTURE................... STRT LGTH

�2 OFFICE-CODE-�45� DISPLAY X(3) 97 3

SET CONTROL ITEM FOR ──────── CALC DUP NOT ALLOWED

RECORD NAME........ PATHREC

RECORD VERSION..... ���1

DATA ITEM.......... REDEFINES....... USAGE....... VALUE............................. PICTURE................... STRT LGTH

�2 WORK-PATH-ID DISPLAY X(22) 1�5 22

-SUBSCHEMA LOGICAL RECORD DESCRIPTIONS- END

14-10 CA-IDMS Logical Record Facility

14.3 Running the LRDEFS report

IDMSRPTS 15.� ─────── INPUT PARAMETER LISTING ─────── DATE TIME PAGE

 �4/28/99 13485� 1

END OF INPUT PARAMETERS

Chapter 14. Documenting the Subschema 14-11

14.4 Running the LRPATH report

14.4 Running the LRPATH report

The LRPATH report lists the paths for each logical record in a given subschema.

You run the LRPATH report by choosing the LRPATH option of the IDMSRPTS
utility.

�� For instructions on running this utility, refer to CA-IDMS Utilities.

The example below shows a sample LRPATH report for the EMPLR35 subschema.

IDMSRPTS 15.� -LOGICAL RECORD PATH DESCRIPTIONS- DATE TIME PAGE

LRPATH FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VERSION 1 �4/28/99 1354�7 1

 LOGICAL RECORD NAME EMP-INFO-LR

 BUILT FROM.........EMPLOYEE

 DEPARTMENT

 OFFICE

 PATHREC VERSION ���1

 OBTAIN EMP-INFO-LR PATH-GROUP

SELECT FOR KEYWORD ON-LEAVE

 COMPUTE

WORK-PATH-ID OF LR EQ 'PATH 1'

ON ���� NEXT

 OBTAIN EACH EMPLOYEE WITHIN EMP-NAME-NDX

WHERE STATUS-�415 EQ '�4'

ON ���� NEXT

ON �3�7 ITERATE

 IF DEPT-EMPLOYEE MEMBER

ON 16�1 RETURN NO-DEPT

ON ���� NEXT

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

FIND CURRENT EMPLOYEE

ON ���� NEXT

 IF OFFICE-EMPLOYEE MEMBER

ON 16�1 RETURN NO-OFFICE

ON ���� NEXT

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

SELECT FOR FIELDNAME-EQ EMPLOYEE EMP-ID-�415

 COMPUTE

WORK-PATH-ID OF LR EQ 'PATH 2'

ON ���� NEXT

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

ON �326 RETURN INVALID-ID

ON ���� NEXT

 IF DEPT-EMPLOYEE MEMBER

ON 16�1 RETURN NO-DEPT

ON ���� NEXT

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

FIND CURRENT EMPLOYEE

ON ���� NEXT

 IF OFFICE-EMPLOYEE MEMBER

ON 16�1 RETURN NO-OFFICE

ON ���� NEXT

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

14-12 CA-IDMS Logical Record Facility

14.4 Running the LRPATH report

IDMSRPTS 15.� -LOGICAL RECORD PATH DESCRIPTIONS- DATE TIME PAGE

LRPATH FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VERSION 1 �4/28/99 1354�7 2

ON ���� NEXT

SELECT FOR FIELDNAME-EQ DEPARTMENT DEPT-ID-�41�

 COMPUTE

WORK-PATH-ID OF LR EQ 'PATH 3'

ON ���� NEXT

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

ON �326 RETURN INVALID-DEPT

ON ���� NEXT

 OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

ON ���� NEXT

ON �3�7 ITERATE

 IF OFFICE-EMPLOYEE MEMBER

ON 16�1 RETURN NO-OFFICE

ON ���� NEXT

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

SELECT FOR FIELDNAME-EQ OFFICE OFFICE-CODE-�45�

 COMPUTE

WORK-PATH-ID OF LR EQ 'PATH 4'

ON ���� NEXT

OBTAIN FIRST OFFICE

WHERE CALCKEY EQ OFFICE-CODE-�45� OF REQUEST

ON �326 RETURN INVALID-OFFICE

ON ���� NEXT

 OBTAIN EACH EMPLOYEE WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

ON �3�7 ITERATE

 IF DEPT-EMPLOYEE MEMBER

ON 16�1 RETURN NO-DEPT

ON ���� NEXT

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

 SELECT USING INDEX EMP-NAME-NDX

 FOR FIELDNAME EMPLOYEE EMP-LAST-NAME-�415

 FIELDNAME EMPLOYEE EMP-FIRST-NAME-�415

 SELECT USING INDEX EMP-NAME-NDX

 FOR FIELDNAME EMPLOYEE EMP-LAST-NAME-�415

 COMPUTE

WORK-PATH-ID OF LR EQ 'PATH 5'

ON ���� NEXT

IDMSRPTS 15.� -LOGICAL RECORD PATH DESCRIPTIONS- DATE TIME PAGE

LRPATH FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VERSION 1 �4/28/99 1354�7 3

 OBTAIN EACH EMPLOYEE USING INDEX

ON ���� NEXT

ON �326 RETURN INVALID-NAME

 IF DEPT-EMPLOYEE MEMBER

ON 16�1 RETURN NO-DEPT

ON ���� NEXT

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

FIND CURRENT EMPLOYEE

ON ���� NEXT

 IF OFFICE-EMPLOYEE MEMBER

ON 16�1 RETURN NO-OFFICE

ON ���� NEXT

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

-LOGICAL RECORD PATH DESCRIPTIONS- END

IDMSRPTS 15.� ─────── INPUT PARAMETER LISTING ─────── DATE TIME PAGE

 �4/28/99 1354�7 1

END OF INPUT PARAMETERS

Chapter 14. Documenting the Subschema 14-13

14.5 Running the LRACT report

14.5 Running the LRACT report

The LRACT report lists program activity against each logical record in a given
subschema. For each logical record accessed by a program, the list includes the name
of the program and the number of times the program issues each DML verb against
the logical record.

You run the LRACT report by choosing the LRACT option of the IDMSRPTS utility.

�� For instructions on running this utility, refer to CA-IDMS Utilities.

The example below shows a sample LRACT report for the EMPLR35 subschema.

IDMSRPTS 15.� ──LOGICAL RECORD ACTIVITY DESCRIPTIONS-- DATE TIME PAGE

LRACT FOR SUBSCHEMA EMPLR35 IN SCHEMA EMPSCHM VERSION 1 �4/28/99 13553� 1

SCHEMA VER SUBSCHEMA RECORD PROGRAM VER USAGE TIMES COMPILED CREATED

EMPSCHM ���1 EMPLR35 EMP-INFO-LR DOC��1 ���1 OBTAIN ���3 �6/11/86 �6/11/86

EMPSCHM ���1 EMPLR35 EMP-INFO-LR DOC��2 ���1 OBTAIN ���3 �6/11/86 �6/11/86

EMPSCHM ���1 EMPLR35 EMP-INFO-LR DOC��3 ���1 OBTAIN ���3 �6/11/86 �6/11/86

EMPSCHM ���1 EMPLR35 EMP-INFO-LR DEPT-1 ���1 OBTAIN ���1 �7/16/86 �7/16/86

──LOGICAL RECORD ACTIVITY DESCRIPTIONS-- END

IDMSRPTS 15.� ─────── INPUT PARAMETER LISTING ─────── DATE TIME PAGE

 �4/28/99 13553� 1

END OF INPUT PARAMETERS

14-14 CA-IDMS Logical Record Facility

 Chapter 15. Currency Considerations

15.1 Introduction . 15-3
15.2 How LRF uses currency . 15-4
15.3 Choosing a currency option . 15-7

15.3.1 Example . 15-7
15.4 Currency considerations for role names 15-9

15.4.1 Example . 15-9

Chapter 15. Currency Considerations 15-1

15-2 CA-IDMS Logical Record Facility

15.1 Introduction

 15.1 Introduction

The DBMS checks and updates currency while processing path-DML statements, just
as it does while processing navigational DML statements. In LRF, currency is
transparent to the programmer. The programmer does not have to know the currency
of records, sets, or areas to execute or reexecute a path.

Subschema currency tables: Currencies for area, set, record type, and run unit
are kept in subschema currency tables, just as they are for navigational DML
programs.

�� For more information on subschema currency tables, refer to the CA-IDMS
Navigational DML Programming.

Path-group control block: After the execution of each path database retrieval,
update, or control command, LRF copies the appropriate currencies from the
subschema currency tables to a path-group control block. There is one path-group
control block for each of the four path groups (OBTAIN, STORE, MODIFY, and
ERASE). These control blocks maintain currencies by path-DML statement.

Types of currencies copied: The following table lists the types of currencies that
get copied from the subschema currency tables to the path-group control block. LRF
copies these currencies after the execution of each path-DML command.

The remainder of this chapter describes how LRF uses currency, how to choose a
currency option for the subschema, and how currency is maintained with role names.

Path-DML command Types of currencies copied to a
path-group control block

FIND/OBTAIN EACH
 WITHIN SET

FIND/OBTAIN EACH
 USING INDEX

FIND/OBTAIN EACH
 WHERE CALCKEY

Set currencies (current, next, prior, and
owner) for the named chained, indexed, or
CALC set

FIND/OBTAIN EACH
 WITHIN AREA

Area currencies

All other commands Run-unit currency

Chapter 15. Currency Considerations 15-3

15.2 How LRF uses currency

15.2 How LRF uses currency

LRF uses the currencies saved in the path-group control blocks to:

■ Protect the database record occurrences accessed by LRF from data
corruption. LRF protects these record occurrences by placing implicit locks on
them. LRF keeps these locks either until the associated command is reexecuted or
until the saved currencies are cleared. For more information on implicit database
locks, refer to CA-IDMS Database Administration.

■ Position itself in an iteration cycle (OBTAIN path-group currencies only). This
use of currency is described below.

When a program issues an OBTAIN NEXT command (requesting path iteration), LRF
copies the db-key values saved for the last iterated verb from the OBTAIN path-group
control block back to the subschema currency tables. LRF then issues a FIND NEXT
or OBTAIN NEXT command to retrieve the next occurrence of the target database
record. The format of the FIND/OBTAIN command depends on whether the iterated
verb is a FIND or an OBTAIN verb.

How LRF saves currencies: LRF saves currencies for each path group separately.
This allows iteration to occur nonconsecutively as well as consecutively. For example,
a programmer may want to OBTAIN a logical record, MODIFY the logical record,
and then OBTAIN the next logical record. Because currencies are saved by path
group, LRF can pick up the iteration cycle where it left off. For more information on
iteration, refer to Chapter 11, “Controlling Path Execution” on page 11-1.

The following diagram shows how LRF uses currency. The currencies LRF copies are
used to lock database record occurrences and to position LRF in an iteration cycle.

15-4 CA-IDMS Logical Record Facility

15.2 How LRF uses currency

Saving currencies for an OBTAIN path: LRF saves currencies for an OBTAIN
path until one of the following activities occurs:

■ The program issues an OBTAIN FIRST statement either for the same path or
for a different path. In this case, LRF clears the OBTAIN path-group control
block.

■ The program issues an OBTAIN NEXT statement for the path, directing LRF
to execute the path from the last successfully executed iterable command. In this
case, the existing currencies saved after the iteration point are cleared. The
currencies saved before the iteration point do not change.

■ The program issues a COMMIT ALL or a ROLLBACK CONTINUE
statement, which clears all path-group currencies.

■ The run unit ends (that is, the program issues a FINISH or ROLLBACK
statement), which clears all path-group currencies.

■ The path returns LR-NOT-FOUND or LR-ERROR, which clears all OBTAIN
path-group currencies.

Saving currencies for an update path: LRF saves currencies for a STORE,
MODIFY, or ERASE path until one of the following activities occurs:

■ The program issues another STORE, MODIFY, or ERASE logical record
command, respectively. In this case, LRF clears the path-group control block.

Chapter 15. Currency Considerations 15-5

15.2 How LRF uses currency

■ The program issues a COMMIT ALL or ROLLBACK CONTINUE
statement, which clears all path-group currencies.

■ The run unit ends (that is, the program issues a FINISH or ROLLBACK)
statement, which clears all path-group currencies.

■ The path returns LR-NOT-FOUND or LR-ERROR, which clears all STORE,
MODIFY, or ERASE path-group currencies, respectively.

15-6 CA-IDMS Logical Record Facility

15.3 Choosing a currency option

15.3 Choosing a currency option

You can choose one of the following currency options when you define a
logical-record subschema:

■ LR CURRENCY NO RESET copies the db-key for the last iterated verb from
the OBTAIN path-group control block to the subschema currency tables. This
activity is performed when a program issues an OBTAIN NEXT logical record
request (requesting path iteration).

■ LRF CURRENCY RESET (default) issues a FIND/OBTAIN DBKEY command
for each path database retrieval command issued before the iteration point. This
activity refreshes program variable storage. It also reestablishes the currencies in
the subschema currency tables so they reflect the currencies saved in the OBTAIN
path-group control block. It is performed when a program issues an OBTAIN
NEXT logical record request (requesting path iteration).

The RESET option also directs LRF to copy the db-key for the last iterated verb
from the OBTAIN path-group control block to the subschema currency tables.

 15.3.1 Example

The following example illustrates the difference between LR CURRENCY NO RESET
and LR CURRENCY RESET. The path in this example retrieves department,
employee, and skill information for all employees who work in a particular
department. The iteration points in the path are shaded.

Path code:

Chapter 15. Currency Considerations 15-7

15.3 Choosing a currency option

ADD

PATH-GROUP NAME IS OBTAIN SKILL-LR

SELECT FOR FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

FIND EACH EXPERTISE WITHIN EMP-EXPERTISE

OBTAIN OWNER SKILL WITHIN SKILL-EXPERTISE.

Program request:

OBTAIN FIRST SKILL-LR

WHERE DEPT-ID-�41� EQ '52��'.

ON LR-FOUND

 REPEAT.

OBTAIN NEXT SKILL-LR

WHERE DEPT-ID-�41� EQ '52��'.

 PUT DETAIL.

 END.

DISPLAY.

Given the above path:

■ If the subschema currency option is NO RESET, LRF copies the db-key of the
last iterated verb from the path-group control block to the subschema currency
tables, before it iterates the path. It does not reretrieve the DEPARTMENT and
EMPLOYEE records.

■ If the subschema currency option is RESET, LRF issues the commands shown
below, before it iterates the path. (Assume that the last successfully executed
iterable command is the FIND EACH EXPERTISE command.)

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

As with the NO RESET option, LRF also copies the db-key of the last iterated
verb from the path group-control block to the subschema currency tables, before it
iterates the path.

For a discussion of design considerations with regard to the NO RESET and RESET
currency options, refer to Chapter 3, “Preliminary Analysis and Design” on page 3-1.

15-8 CA-IDMS Logical Record Facility

15.4 Currency considerations for role names

15.4 Currency considerations for role names

When you use role names, you should be aware of the following currency
considerations:

■ LRF keeps separate currencies by role name only during an iteration cycle. You
must use the FIND/OBTAIN EACH role-name statement for this to occur.

■ Do not mix iterative retrieval activity by role name with STORE, MODIFY, or
ERASE activity for the same role-name occurrence. These commands will
STORE, MODIFY, or ERASE whatever record occurrence is current of run unit.
They do not keep track of the current role name.

 15.4.1 Example

The example shown below illustrates how the use of role names can affect currency.
The OBTAIN path in this example retrieves two occurrences of the ALBUM record.
GREATEST HITS is a gold album; RUBBER SOUL is a platinum album. The
MODIFY path then tries to modify both record occurrences.

When the MODIFY GOLDREC statement is issued, RUBBER SOUL is current of run
unit. Thus, RUBBER SOUL is modified instead of GREATEST HITS. When the
MODIFY PLATREC statement is issued, RUBBER SOUL is modified again. The
GREATEST HITS album remains unchanged.

Path code:

Chapter 15. Currency Considerations 15-9

15.4 Currency considerations for role names

ADD LOGICAL RECORD NAME IS MUSIC-LR

ELEMENTS ARE ALBUM ROLE IS GOLDREC

ALBUM ROLE IS PLATREC

ADD

PATH-GROUP NAME IS OBTAIN MUSIC-LR

 SELECT

OBTAIN EACH GOLDREC WITHIN MUSIC-NDX

WHERE FLAG OF GOLDREC EQ 'G'

OBTAIN EACH PLATREC WITHIN MUSIC-NDX

WHERE FLAG OF PLATREC EQ 'P'.

ADD

PATH-GROUP NAME IS MODIFY MUSIC-LR

SELECT FOR KEYWORD MOD-REC

FIND CURRENT GOLDREC

 MODIFY GOLDREC

FIND CURRENT PLATREC

 MODIFY PLATREC.

Program request:

OBTAIN FIRST MUSIC-LR.

 ON LR-FOUND

 REPEAT.

 PUT DETAIL.

 MODIFY MUSIC-LR

 WHERE MOD-REC.

OBTAIN NEXT MUSIC-LR.

END.

 DISPLAY.

15-10 CA-IDMS Logical Record Facility

Chapter 16. Implementing Data Integrity Rules

16.1 Data integrity rules . 16-3
16.1.1 Examples . 16-3

Chapter 16. Implementing Data Integrity Rules 16-1

16-2 CA-IDMS Logical Record Facility

16.1 Data integrity rules

16.1 Data integrity rules

You can use LRF to implement integrity rules that protect the corporate data resource:

■ Referential integrity rules protect the relationship between database records that
have shared keys. For example, in the sample Customer-Order database shown
below, you can prevent an application program from storing a new ORDER record
for which no valid customer exists.

■ Application-dependent integrity rules ensure that the logical relationships
between data meet criteria that are established by the application. For example,
you can prevent an application program from erasing an existing ORDER record if
an associated item has already been shipped.

In general, you use the path WHERE clause and EVALUATE commands to
implement data integrity rules through LRF. Examples that show this implementation
are presented below. For more information on data integrity, refer to CA-IDMS
Database Design Guide.

 16.1.1 Examples

Enforcing data integrity rules for STORE activity: This path ensures that the
customer number is valid, before it stores a new ORDER record. If the customer
number is not valid, the path returns an appropriate DBA-defined path status.

Path code:

Chapter 16. Implementing Data Integrity Rules 16-3

16.1 Data integrity rules

ADD

PATH-GROUP NAME IS STORE CUST-ORD-LR

SELECT FOR KEYWORD STORE-ORD

FIND FIRST CUSTOMER WITHIN CUST-NDX

WHERE SORTKEY EQ CUST-NUMBER OF ORDER OF LR

ON ���� NEXT

ON �326 RETURN 'INVALID-CUST'

 STORE ORDER.

Program request:

MOVE INPUT-WORK TO CUST-ORD-LR.

STORE CUST-ORD-LR

 WHERE STORE-ORD.

ON INVALID-CUST

DISPLAY MSG TEXT IS 'CUSTOMER NUMBER IS INVALID'.

Enforcing data integrity rules for ERASE activity: This path erases an
occurrence of the ORDER record when a customer decides to cancel an order. The
path also erases all ITEM records that are associated with the order.

Before any records are erased, the path checks to see if any of the requested items
have been shipped. If an item has been shipped, the path indicates that it can't erase
the order.

Path code:

ADD

PATH-GROUP NAME IS ERASE ORDER-LR

SELECT FOR KEYWORD ERASE-ORD

FIELDNAME-EQ ORD-NUMBER OF ORDER

OBTAIN FIRST ORDER WITHIN ORD-NDX

WHERE SORTKEY EQ ORD-NUMBER OF ORDER OF REQUEST

ON ���� NEXT

ON �326 RETURN 'INVALID-ORD'

FIND FIRST ITEM WITHIN ORD-NDX

WHERE (SORTKEY EQ ORD-NUMBER OF ORDER OF LR)

AND (ITEM-QTY-SHIPPED > �)

ON ���� RETURN ITEM-SHIPPED

ON �326 NEXT

FIND EACH ITEM WITHIN ORD-NDX

WHERE SORTKEY EQ ORD-NUMBER OF ORDER OF LR

ON ���� NEXT

ON �326 DO

 ERASE ORDER

 END

 ERASE ITEM

ON ���� ITERATE.

Program request:

16-4 CA-IDMS Logical Record Facility

16.1 Data integrity rules

MOVE INPUT-NUMBER TO ORDER-NUMBER OF ORDER OF LR.

ERASE ORDER-LR

WHERE (ORDER-NUMBER OF ORDER EQ ORDER-NUMBER OF ORDER OF LR)

 AND ERASE-ORD.

ON INVALID-ORD

DISPLAY MSG TEXT IS 'ORDER NUMBER IS INVALID'.

ON ITEM-SHIPPED

DISPLAY MSG TEXT IS 'AN ITEM HAS BEEN SHIPPED. THE ORDER CANNOT

 BE CANCELED'.

Chapter 16. Implementing Data Integrity Rules 16-5

16-6 CA-IDMS Logical Record Facility

Chapter 17. Using LRF with Other Facilities

17.1 Introduction . 17-3
17.2 Using LRF with CA-OLQ . 17-4
17.3 Using LRF with CA-ADS and CA-ADS/Batch 17-5
17.4 Using LRF with the CA-IDMS/DC Mapping Facility 17-6

Chapter 17. Using LRF with Other Facilities 17-1

17-2 CA-IDMS Logical Record Facility

17.1 Introduction

 17.1 Introduction

You can use LRF with a variety of tools. This chapter describes how to use LRF
with:

 ■ CA-OLQ

■ CA-ADS (including CA-ADS/Batch)

■ CA-IDMS/DC Mapping Facility

�� For information on using LRF with CA-Culprit, refer to the CA-Culprit Reference
Guide.

You can also use LRF with a variety of programming languages, including COBOL,
PL/I, and Assembler.

�� For information on using LRF with these languages, refer to the CA-IDMS
Navigational DML Programming. and to the corresponding CA-IDMS/DB or
CA-IDMS/DC reference.

Chapter 17. Using LRF with Other Facilities 17-3

17.2 Using LRF with CA-OLQ

17.2 Using LRF with CA-OLQ

CA-OLQ is a data retrieval system used to access information stored in an
CA-IDMS/DB database and to produce and format reports. You can use logical-record
subschemas with both command-mode and menu-mode CA-OLQ.

What you can do: By using logical-record subschemas with menu-mode CA-OLQ,
you can:

■ Simplify end-user queries. If the subschema usage mode is LR, the CA-OLQ
Record Select screen will display only the logical-record(s) that are included in the
subschema. The user will not have to choose from a variety of database records
to make a specific query.

■ Ensure that CA-OLQ uses the most efficient path when it processes queries.

You can also use CA-OLQ to test logical-record subschemas relatively easily and
quickly. Because CA-OLQ allows data retrieval only, you can't use it to test update
paths.

Considerations: The following considerations apply to using LRF with CA-OLQ:

■ CA-OLQ's program variable storage cannot be accessed by other facilities.
This has the following implications:

– Using the OF LR clause in a path used with CA-OLQ can lead to
unpredictable results. The OF LR clause directs LRF to look in program
variable storage for values that may or may not be there. Where possible, use
the OF REQUEST clause instead.

– If you use the NO RESET currency option, the data above the iteration point
will not be visible after the first logical-record occurrence is returned. Use
the RESET currency option if you want the path to return more than one
logical-record occurrence.

– If you want the values in an IDD-work field to be displayed after the first
logical record is returned, you should compute the values below the lowest
iteration point. Because an IDD-defined work record has no db-key, it can't
be reobtained.

■ Always use the PATHSTATUS option in CA-OLQ when you execute a path
that contains a DBA-defined path status. This option allows the status to be
displayed on the screen.

For more information on using CA-OLQ, refer to the CA-OLQ documentation set.

17-4 CA-IDMS Logical Record Facility

17.3 Using LRF with CA-ADS and CA-ADS/Batch

17.3 Using LRF with CA-ADS and CA-ADS/Batch

The Application Development System, including CA-ADS and ADS/Batch, allow users
to develop and execute applications.

Considerations: The following considerations apply to using LRF with CA-ADS
and ADS/Batch:

 ■ Database considerations:

– A base subschema record may not participate in more than one logical
record per dialog. Therefore, all logical records used in a dialog must have
different logical-record elements, unless you assign role names to the
elements.

For information on logical-record elements, refer to Chapter 4, “Starting to
Define the Subschema” on page 4-1. For information on role names, refer to
Chapter 13, “Using Role Names” on page 13-1.

– The OBTAIN logical-record command defaults to OBTAIN NEXT
logical-record. In certain situations, using the OBTAIN logical-record
command may result in an LR-NOT-FOUND path status.

To avoid this situation:

— Use the OBTAIN FIRST logical-record command when you want to
retrieve the first occurrence of the named logical record.

— Use the OBTAIN NEXT logical-record command when you want to
retrieve the next occurrence of the named logical record.

■ Flow of control considerations:

– When you invoke or link to a lower-level dialog using the same
logical-record subschema, the logical-record data is available at the lower
level.

The data is not available when you transfer to a lower-level dialog, or invoke
or link to a dialog that is not an extended run unit.

– To change logical-record data in a lower-level dialog and then access
these changes on a higher-level dialog, you must use the RESET subschema
currency option. This option is described in Chapter 3, “Preliminary Analysis
and Design” on page 3-1, and Chapter 4, “Starting to Define the Subschema”
on page 4-1.

■ With AUTOSTATUS, you do not get the 20xx status codes returned to your
dialogs. Because these codes usually indicate a program/path interaction problem,
you might want to use the ALLOWING ERROR CODES expression to test for
these codes.

�� For more information on CA-ADS and ADS/Batch, refer to the Application
Development System documentation set.

Chapter 17. Using LRF with Other Facilities 17-5

17.4 Using LRF with the CA-IDMS/DC Mapping Facility

17.4 Using LRF with the CA-IDMS/DC Mapping Facility

The CA-IDMS/DC mapping facility is used to define the layout of maps. These maps
can be associated with dialogs generated by the Application Development System and
programs written in COBOL, PL/I, and Assembler.

Considerations: The following considerations apply to using logical records with
the CA-IDMS/DC mapping facility:

■ You must name all logical-record elements in the RECORD NAME field of
the Initial Definition screen.

■ If a logical-record element is associated with a role name, you must specify the
role name in the ROLE NAME field of the Initial Definition screen. You will
need to specify both the logical-record name and the role name for each role name
used.

�� For more information on the mapping facility, refer to CA-IDMS Mapping Facility.

17-6 CA-IDMS Logical Record Facility

Chapter 18. Debugging Subschema Code

18.1 Debugging and testing . 18-3

Chapter 18. Debugging Subschema Code 18-1

18-2 CA-IDMS Logical Record Facility

18.1 Debugging and testing

18.1 Debugging and testing

What to watch out for: Before you use a logical-record subschema, it is a good
idea to review both the path code and the program request. Here are some things to
watch out for:

■ In the path code:

– Missing or unresolved DO/END clauses

– Forgetting to put ON clauses after each path-DML statement

– Failing to establish run-unit currency prior to an IF [NOT] EMPTY command

– Omitting qualification by role name when the named field is assigned a role
name

– Neglecting to obtain records prior to the reference of the values needed in an
OF LR statement

– Omitting EACH commands and expecting iteration to occur

– Forgetting to specify OF LR for a logical-record field that participates in an
EVALUATE or COMPUTE operation

– Forgetting to put a version number on an IDD-defined work record when you
include this record as a logical-record element

■ In the program request:

– Omitting the FIRST/NEXT qualifier in a logical-record request

– Omitting qualification by role name when the named field is assigned a role
name

– Using selection fields from records that are not being obtained in the path

– Using IDD-defined work fields as selection fields

– Issuing a COMMIT ALL, ROLLBACK, or ROLLBACK CONTINUE
command, and expecting LRF to continue an iteration cycle

Testing: After you review your subschema, you can test it by using CA-OLQ,
CA-ADS, CA-ADS/Batch, or other CA-IDMS facilities. If you encounter problems,
you can debug your subschema code in a variety of ways. Here are some suggestions:

■ Include an IDD-defined work record as a logical-record element and return an
appropriate literal through this element. The literal can indicate which path was
executed.

■ Use DBA-defined path statuses to trace the path code.

■ Regenerate and test the basic subschema code. If the code works, gradually
add and test additional pieces of code.

■ Use the online debugger to set breakpoints in the program and to display the
contents of storage on request. For information on using the online debugger,
refer to CA-IDMS Online Debugger.

Chapter 18. Debugging Subschema Code 18-3

18.1 Debugging and testing

■ Request a snap dump of the contents of one or more areas in memory by using
the Application Development System SNAP command (or the various DML
SNAP commands). For more information on the SNAP command, refer to the
CA-ADS Reference Guide. or to the appropriate DML manual.

18-4 CA-IDMS Logical Record Facility

Chapter 19. LRF Programming Techniques

19.1 Introduction . 19-3
19.2 Using LRF documentation . 19-4

19.2.1 The LRDEFS report . 19-4
19.2.2 The LRPATH report . 19-8

19.3 Accessing logical records . 19-12
19.3.1 Retrieving logical records . 19-12
19.3.2 Modifying logical records . 19-13
19.3.3 Storing logical records . 19-15
19.3.4 Erasing logical records . 19-16
19.3.5 Using the WHERE clause . 19-18

19.3.5.1 Comparisons . 19-18
19.3.5.2 Keywords . 19-21
19.3.5.3 Coding techniques and path restrictions 19-21

19.3.6 Examples . 19-21
19.4 Testing for path status . 19-24

19.4.1 System-defined path statuses . 19-24
19.4.2 DBA-defined path statuses . 19-25
19.4.3 The ON clause . 19-25
19.4.4 Partial logical records . 19-26
19.4.5 Path status examples . 19-26

Chapter 19. LRF Programming Techniques 19-1

19-2 CA-IDMS Logical Record Facility

19.1 Introduction

 19.1 Introduction

This section discusses the LRF programming techniques that you use in coding
CA-IDMS/DB and CA-IDMS/DC programs. These techniques include:

■ Using LRF documentation A discussion of the LRDEFS and LRPATH reports
and how to use them in designing your application.

■ Accessing logical records A discussion of the DML statements available for
accessing logical records and the processing that you must perform before each
call to LRF. An explanation of the WHERE clause is included.

■ Testing for path status A discussion on testing the path statuses that are
returned after every call to LRF.

Chapter 19. LRF Programming Techniques 19-3

19.2 Using LRF documentation

19.2 Using LRF documentation

LRF documentation, which is available through the IDMSRPTS utility, is useful in all
stages of LRF program development. These reports contain a variety of information,
such as records and record elements available to your application, DBA-defined path
statuses, and efficient WHERE clause arguments.

The following LRF reports are most useful to application programmers:

■ LRDEFS lists records, record elements, and all DBA comments.

■ LRPATH lists the records participating in the logical record and all DBA-defined
path groups.

The LRDEFS report and the LRPATH report are explained below.

19.2.1 The LRDEFS report

When writing an LRF application, you must isolate specific information about the
logical records to be accessed. This information is provided by the LRDEFS report.
The LRDEFS report supplies definitions of all fields included in each logical record
defined in the subschema.

DBA comments: This report also lists comments provided by the DBA on the
following topics:

■ Restrictions placed on the operations that the program can perform in conjunction
with each logical record (that is, which of the LRF database access statements can
you use).

■ Selection criteria permitted in the WHERE clause that can accompany each LRF
database access statement, for each logical record available to the program. The
LRDEFS report provides the following information about selection criteria, as
defined by the DBA:

– Names of individual logical-record fields that can be used in WHERE clause
comparisons

– Types of comparisons that can or must be performed against the named fields

 – DBA-designated keywords

The WHERE clause is explained in detail later in this section.

■ Sequence of data returned to the program.

■ IDD-defined records (if any) included in the logical record.

■ Path statuses returned to the program by LRF to indicate the result of the
requested operation.

■ Program action to be taken following the return of DBA-defined path statuses.

19-4 CA-IDMS Logical Record Facility

19.2 Using LRF documentation

Field definitions and DBA-supplied comments contained in this report provide all the
information needed to access the EMP-JOB-LR logical record.

IDMSRPTS 15.� -SUBSCHEMA LOGICAL RECORD DESCRIPTIONS- DATE TIME PAGE

LRDEFS FOR SUBSCHEMA EMPSS19 IN SCHEMA EMPSCHM VERSION 1�� �5/�6/99 13�256

LOGICAL RECORD NAME EMP-JOB-LR

 COMMENTS ���

EMP-JOB-LR THIS LOGICAL RECORD ACCESSES EMPLOYEE,

OFFICE, DEPARTMENT, AND JOB INFORMATION.

 ���

 LR VERBS ALLOWED: OBTAIN

 ���

SELECTION CRITERIA: (TOTAL OF 3 OBTAIN PATHS)

�������������� OBTAIN PATH 1 <<<<<<<<<<<<<<<<<<

THIS PATH WILL BE SELECTED IF THE FOLLOWING COMPARISON

IS INCLUDED IN THE PROGRAM-REQUEST

 WHERE CLAUSE:

DEPT-ID-�41� = A LITERAL

A PROGRAM VARIABLE THAT HAS BEEN DEFINED TO IDD

A FIELD IN THE AREA RESERVED FOR THE LOGICAL

RECORD IN PROGRAM VARIABLE STORAGE (OF LR)

THIS PATH OBTAINS AN OCCURRENCE OF THE EMP-JOB-LR

FOR EACH EMPLOYEE

IN THE SPECIFIED DEPARTMENT.

NOTE THAT DEPT-ID-�41� IS USED AS A CALC KEY BY THE PATH.

������������� PATH STATUSES ������������

LR-NOT-FOUND ── ALL OCCURRENCES OF THE LOGICAL RECORD

HAVE BEEN RETRIEVED.

DEPT-NOT-FOUND ── THE DBMS COULD NOT FIND THE SPECIFIED

 DEPARTMENT.

���� PROGRAM ACTION ── WRITE A MESSAGE INDICATING THE

KEY OF THE RECORD.

DEPT-EMPTY ── THE DEPARTMENT HAS NO EMPLOYEES

���� PROGRAM ACTION ── THE DEPARTMENT DATA IS GOOD;

SPACE OR BLANK OUT EVERYTHING

ELSE AND WRITE A NO-EMPLOYEES

 MESSAGE.

NO-JOBS ── THE EMPLOYEE HAS NO JOB RECORDS

���� PROGRAM ACTION ── THE DEPARTMENT AND EMPLOYEE DATA

IS GOOD; SPACE OR BLANK OUT EVERYTHING

ELSE AND WRITE A NO-JOBS MESSAGE.

NO-OFFICE ── THE EMPLOYEE HAS NO OFFICE RECORD

���� PROGRAM ACTION ── EVERYTHING ELSE IS GOOD; SPACE OR

BLANK OUT THE OFFICE RECORD AND

WRITE A NO-OFFICE MESSAGE.

Chapter 19. LRF Programming Techniques 19-5

19.2 Using LRF documentation

�������������� OBTAIN PATH 2 <<<<<<<<<<<<<<<<<<

THIS PATH WILL BE SELECTED IF THE FOLLOWING COMPARISON

IS INCLUDED IN THE PROGRAM-REQUEST

 WHERE CLAUSE:

 EMP-ID-�415 = A LITERAL

A PROGRAM VARIABLE THAT HAS BEEN DEFINED TO IDD

A FIELD IN THE AREA RESERVED FOR THE LOGICAL

RECORD IN PROGRAM VARIABLE STORAGE (OF LR)

THIS PATH OBTAINS AN OCCURRENCE OF THE EMP-JOB-LR

FOR EACH SPECIFIED EMPLOYEE

NOTE THAT EMP-ID-�415 IS USED AS A CALC KEY BY THE PATH.

������������� PATH STATUSES ������������

LR-NOT-FOUND ── ALL OCCURRENCES OF THE LOGICAL RECORD

HAVE BEEN RETRIEVED.

EMP-NOT-FOUND ── THE DBMS COULD NOT FIND THE SPECIFIED

 EMPLOYEE.

���� PROGRAM ACTION ── WRITE A MESSAGE INDICATING THE

KEY OF THE RECORD.

NO-DEPT ── THE EMPLOYEE HAS NO DEPARTMENT RECORD

���� PROGRAM ACTION ── THE EMPLOYEE DATE IS GOOD; SPACE OR

BLANK OUT EVERYTHING ELSE AND

WRITE A NO-DEPARTMENT MESSAGE.

NO-OFFICE ── THE EMPLOYEE HAS NO OFFICE RECORD.

���� PROGRAM ACTION ── THE EMPLOYEE

AND DEPARTMENT DATA IS GOOD;

SPACE OR BLANK OUT EVERYTHING

ELSE AND WRITE A NO-OFFICE

 MESSAGE.

NO-JOBS ── THE EMPLOYEE HAS NO JOB RECORDS

���� PROGRAM ACTION ── THE OFFICE, EMPLOYEE,

AND DEPARTMENT DATA

IS GOOD; SPACE OR BLANK OUT THE JOB

RECORD AND WRITE A NO-JOBS MESSAGE.

�������������� OBTAIN PATH 3 <<<<<<<<<<<<<<<<<<

THIS PATH WILL BE SELECTED FOR ALL OTHER

 PROGRAM REQUESTS.

THIS PATH OBTAINS AN OCCURRENCE OF THE

EMP-JOB-LR LOGICAL RECORD FOR EACH EMPLOYEE.

THIS PATH ENTERS THE DATABASE THROUGH AN AREA SWEEP

OF THE EMP-DEMO-REGION.

������������� PATH STATUSES ������������

LR-NOT-FOUND ── ALL OCCURRENCES OF THE LOGICAL RECORD

HAVE BEEN RETRIEVED.

NO-DEPT ── THE EMPLOYEE HAS NO DEPARTMENT RECORD

���� PROGRAM ACTION ── THE EMPLOYEE DATA IS GOOD; SPACE OR

BLANK OUT EVERYTHING ELSE AND

WRITE A NO-DEPARTMENT MESSAGE.

NO-OFFICE ── THE EMPLOYEE HAS NO OFFICE RECORD.

���� PROGRAM ACTION ── THE EMPLOYEE

AND DEPARTMENT DATA IS GOOD;

SPACE OR BLANK OUT EVERYTHING

ELSE AND WRITE A NO-OFFICE

 MESSAGE.

NO-JOBS ── THE EMPLOYEE HAS NO JOB RECORDS

���� PROGRAM ACTION ── THE OFFICE, EMPLOYEE,

AND DEPARTMENT DATA

IS GOOD; SPACE OR BLANK OUT THE JOB

RECORD AND WRITE A NO-JOBS MESSAGE.

19-6 CA-IDMS Logical Record Facility

19.2 Using LRF documentation

BUILT FROM.........

RECORD NAME........ EMPLOYEE

RECORD ID.......... �415

RECORD VERSION..... �1��

RECORD LENGTH...... FIXED

LOCATION MODE...... CALC USING EMP-ID-�415

WITHIN............. EMP-DEMO-REGION FROM PAGE 4�13��3 THRU 4�131��

ACCESS RESTRICTION ON FOR........... ERASE

DATA ITEM.......... REDEFINES....... USAGE....... VALUE............................. PICTURE................... STRT LGTH

�2 EMP-ID-�415 DISPLAY 9(4) 1 4

SET CONTROL ITEM FOR ──────── CALC DUP NOT ALLOWED

�2 EMP-NAME-�415 DISPLAY 5 25

�3 EMP-FIRST-NAME-�415 DISPLAY X(1�) 5 1�

SET CONTROL ITEM FOR ──────── DEPT-EMPLOYEE DUP LAST

SET CONTROL ITEM FOR ──────── EMP-NAME-NDX DUP LAST

SET CONTROL ITEM FOR ──────── OFFICE-EMPLOYEE DUP LAST

�3 EMP-LAST-NAME-�415 DISPLAY X(15) 15 15

SET CONTROL ITEM FOR ──────── DEPT-EMPLOYEE DUP LAST

SET CONTROL ITEM FOR ──────── EMP-NAME-NDX DUP LAST

SET CONTROL ITEM FOR ──────── OFFICE-EMPLOYEE DUP LAST

�2 STATUS-�415 DISPLAY X(2) 3� 2

88 ACTIVE-�415 COND 3�

 '�1'

88 ST-DISABIL-�415 COND 3�

 '�2'

88 LT-DISABIL-�415 COND 3�

 '�3'

88 LEAVE-OF-ABSENCE-�415 COND 3�

 '�4'

88 TERMINATED-�415 COND 3�

 '�5'

�2 SS-NUMBER-�415 DISPLAY 9(9) 32 9

�2 START-DATE-�415 DISPLAY 41 6

�3 START-YEAR-�415 DISPLAY 9(2) 41 2

�3 START-MONTH-�415 DISPLAY 9(2) 43 2

�3 START-DAY-�415 DISPLAY 9(2) 45 2

RECORD NAME........ DEPARTMENT

RECORD ID.......... �41�

RECORD VERSION..... �1��

RECORD LENGTH...... FIXED

LOCATION MODE...... CALC USING DEPT-ID-�41�

WITHIN............. ORG-DEMO-REGION FROM PAGE 4�13153 THRU 4�132��

DATA ITEM.......... REDEFINES....... USAGE....... VALUE............................. PICTURE................... STRT LGTH

�2 DEPT-ID-�41� DISPLAY 9(4) 49 4

SET CONTROL ITEM FOR ──────── CALC DUP NOT ALLOWED

�2 DEPT-NAME-�41� DISPLAY X(45) 53 45

�2 DEPT-HEAD-ID-�41� DISPLAY 9(4) 98 4

�2 FILLER DISPLAY XXX 1�2 3

RECORD NAME........ JOB

RECORD ID.......... �44�

RECORD VERSION..... �1��

RECORD LENGTH...... VARIABLE

MINIMUM ROOT....... 24 CHARACTERS

MINIMUM FRAGMENT... 296 CHARACTERS

LOCATION MODE...... CALC USING JOB-ID-�44�

WITHIN............. ORG-DEMO-REGION FROM PAGE 4�13153 THRU 4�132��

CALL PROCEDURES.... NAME.... WHEN.. FUNCTION

IDMSCOMP BEFORE STORE

IDMSCOMP BEFORE MODIFY

 IDMSDCOM AFTER GET

DATA ITEM.......... REDEFINES....... USAGE....... VALUE............................. PICTURE................... STRT LGTH

�2 JOB-ID-�44� DISPLAY 9(4) 1�5 4

SET CONTROL ITEM FOR ──────── CALC DUP NOT ALLOWED

�2 TITLE-�44� DISPLAY X(2�) 1�9 2�

SET CONTROL ITEM FOR ──────── JOB-TITLE-NDX DUP NOT ALLOWED

Chapter 19. LRF Programming Techniques 19-7

19.2 Using LRF documentation

RECORD NAME........ OFFICE

RECORD ID.......... �45�

RECORD VERSION..... �1��

RECORD LENGTH...... FIXED

LOCATION MODE...... CALC USING OFFICE-CODE-�45�

WITHIN............. ORG-DEMO-REGION FROM PAGE 4�13153 THRU 4�132��

DATA ITEM.......... REDEFINES....... USAGE....... VALUE............................. PICTURE................... STRT LGTH

�2 OFFICE-CODE-�45� DISPLAY X(3) 129 3

SET CONTROL ITEM FOR ──────── CALC DUP NOT ALLOWED

�2 OFFICE-ADDRESS-�45� DISPLAY 132 46

�3 OFFICE-STREET-�45� DISPLAY X(2�) 132 2�

�3 OFFICE-CITY-�45� DISPLAY X(15) 152 15

�3 OFFICE-STATE-�45� DISPLAY X(2) 167 2

�3 OFFICE-ZIP-�45� DISPLAY 169 9

�4 OFFICE-ZIP-FIRST-FIVE-�45� DISPLAY X(5) 169 5

�4 OFFICE-ZIP-LAST-FOUR-�45� DISPLAY X(4) 174 4

�2 OFFICE-PHONE-�45� DISPLAY OCCURS 3 9(7) 178 21

�2 OFFICE-AREA-CODE-�45� DISPLAY X(3) 199 3

�2 SPEED-DIAL-�45� DISPLAY X(3) 2�2 3

19.2.2 The LRPATH report

You can obtain additional logical-record information from the LRPATH report, which
lists the DBA-defined path retrieval logic. You should use this report to take special
note of the following significant statements and clauses in the logical-record definition:

Significant statements and clauses

■ ROLE assigns a role name (such as MANAGER) to specified logical-record
components. The DML compiler copies the data items in that record, subordinate
to the role name, into program variable storage at DML compile time. If ROLE is
used to assign a unique identifier to a logical-record component that occurs more
than once in a single logical record, you must qualify all references to elements in
occurrences of the logical-record components.

Note: Assembler programmers: Assembler programs cannot reference roles.

For example, if the DBA assigns the role names WORKER and MANAGER to
the EMPLOYEE database record, the definitions copied into program variable
storage would be as follows:

19-8 CA-IDMS Logical Record Facility

19.2 Using LRF documentation

�1 EMP-EMP-LR.

 �2 MANAGER.

 �3 EMP-ID-�415 PIC 9(4).

 �3 EMP-NAME-�415.

 �4 EMP-FIRST-NAME-�415 PIC X(1�).

 �4 EMP-LAST-NAME-�415 PIC X(15).

 �3 STATUS-�415 PIC X(2).

 �3 SS-NUMBER-�415 PIC 9(9).

 �3 START-DATE-�415.

 �4 START-YEAR-�415 PIC 9(2).

 �4 START-MONTH-�415 PIC 9(2).

 �4 START-DAY-�415 PIC 9(2).

 �3 FILLER PIC X(2).

 �2 WORKER.

 �3 EMP-ID-�415 PIC 9(4).

 �3 EMP-NAME-�415.

 �4 EMP-FIRST-NAME-�415 PIC X(1�).

 �4 EMP-LAST-NAME-�415 PIC X(15).

 �3 STATUS-�415 PIC X(2).

 �3 SS-NUMBER-�415 PIC 9(9).

 �3 START-DATE-�415.

 �4 START-YEAR-�415 PIC 9(2).

 �4 START-MONTH-�415 PIC 9(2).

 �4 START-DAY-�415 PIC 9(2).

 �3 FILLER PIC X(2).

To refer to the employee id of the MANAGER record, you would code:

EMP-ID-�415 OF MANAGER.

ROLE is typically used for reflexive joins and bill-of-materials structures. It can
also be used to reduce program-DBMS communication by accessing more than
one occurrence of the same record type in one request.

■ VERSION IS identifies logical-record components that are IDD-defined work
records. These records can include derived fields whose values are established
through use of the COMPUTE verb.

■ COMPUTE specifies path logic that can perform arithmetic operations.
COMPUTE is typically used either to pass data within the path or to return
information to the application program.

■ EVALUATE specifies path logic that can perform field editing by determining
whether a boolean expression is true or false.

■ ON tests for a specific error status value and indicates the action the path is to
take if that value is returned.

■ RETURN returns path-status information to the application program that reports
on whether path processing is interrupted or terminated. The action to be taken by
the program is influenced by the CLEAR option.

■ CLEAR clears to low values the contents of the logical record in program
variable storage. If CLEAR is not specified by the RETURN command, partial
logical records will be returned to the program; some fields in variable storage
may contain data from the previous logical record. Invalid data can be avoided in
one of the following ways:

– The subschema path can use the COMPUTE verb to set invalid fields to
blanks or zeros.

– The program can set invalid fields to blanks or zeros after the return of a
DBA-specified path status.

Chapter 19. LRF Programming Techniques 19-9

19.2 Using LRF documentation

Sample report: Below is a sample LRPATH report. The LRPATH report provides
information on ROLE names, IDD-defined records, path statuses, and partial paths that
can assist in the design of your application.

IDMSRPTS 15.� -LOGICAL RECORD PATH DESCRIPTIONS- DATE TIME PAGE

LRPATH FOR SUBSCHEMA EMPSS71 IN SCHEMA EMPSCHM VERSION 1 �4/�6/99 13�523

LOGICAL RECORD NAME EMP-MATCH-LR

BUILT FROM.........DEPARTMENT

 EMPLOYEE

 EMPLOYEE ROLE MANAGER
 OFFICE

 EXPERTISE

 SKILL

 MESSAGE-REC VERSION ���1

 OBTAIN EMP-MATCH-LR PATH-GROUP

SELECT FOR FIELDNAME-EQ DEPARTMENT DEPT-ID-�41�

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

ON �326 CLEAR RETURN DEPT-NOT-FOUND
ON ���� NEXT

IF DEPT-EMPLOYEE IS NOT EMPTY

ON ���� CLEAR RETURN DEPT-EMPTY

ON 16�1 NEXT

 OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

ON ���� NEXT

ON �3�7 ITERATE

FIND FIRST STRUCTURE WITHIN REPORTS-TO

ON �3�7 DO
 COMPUTE

MESSAGE-3 OF LR EQ '�� NO MANAGER ��'
ON ���� NEXT

 END

ON ���� DO

OBTAIN OWNER MANAGER WITHIN MANAGES

ON ���� NEXT

FIND FIRST STRUCTURE WITHIN MANAGES

ON ���� NEXT

ON �3�7 ITERATE

FIND OWNER EMPLOYEE WITHIN REPORTS-TO

ON ���� NEXT

 END

 IF OFFICE-EMPLOYEE MEMBER

ON 16�1 DO

 COMPUTE

MESSAGE-1 OF LR EQ '�� NO OFFICE ��'

ON ���� NEXT

 COMPUTE

OFFICE-CODE-�45� OF LR EQ ' '

ON ���� NEXT

 COMPUTE

OFFICE-STREET-�45� OF LR EQ ' '

ON ���� NEXT

19-10 CA-IDMS Logical Record Facility

19.2 Using LRF documentation

 COMPUTE

OFFICE-CITY-�45� OF LR EQ ' '

ON ���� NEXT

 COMPUTE

OFFICE-STATE-�45� OF LR EQ ' '

ON ���� NEXT

 COMPUTE

OFFICE-ZIP-FIRST-FIVE-�45� OF LR EQ ' '

ON ���� NEXT

 END

ON ���� DO

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

 END

IF EMP-EXPERTISE IS NOT EMPTY

ON ���� DO

 COMPUTE

MESSAGE-2 OF LR EQ ' �� NO SKILL ��'

ON ���� NEXT

 COMPUTE

SKILL-ID-�455 OF LR EQ �

ON ���� NEXT

 COMPUTE

SKILL-NAME-�455 OF LR EQ ' '

ON ���� NEXT

 COMPUTE

SKILL-LEVEL-�425 OF LR EQ �

ON ���� NEXT

 END

ON 16�1 DO

 OBTAIN EACH EXPERTISE WITHIN EMP-EXPERTISE

ON ���� NEXT

ON �3�7 ITERATE

OBTAIN OWNER WITHIN SKILL-EXPERTISE

ON ���� NEXT

 END

Chapter 19. LRF Programming Techniques 19-11

19.3 Accessing logical records

19.3 Accessing logical records

The statements used to access logical records are OBTAIN, MODIFY, STORE, and
ERASE. Each of these statements can include the following clauses:

■ A WHERE clause to specify the logical-record occurrences to be accessed. For
more information, see 19.3.5, “Using the WHERE clause” on page 19-18 later in
this section.

■ An ON clause to evaluate the result of a request and specify action based on that
result. For more information, see 19.4.3, “The ON clause” on page 19-25 later in
this section.

The OBTAIN, MODIFY, STORE, and ERASE statements are discussed below,
followed by a discussion of the WHERE clause.

19.3.1 Retrieving logical records

To retrieve logical records, perform the following steps:

1. Initialize any appropriate symbolic- or CALC-key fields.

2. Issue the OBTAIN statement, optionally specifying selection criteria in the
WHERE clause.

3. Test for all possible path statuses.

4. If LRF returns a path status of LR-ERROR, perform the IDMS-STATUS routine.

You can retrieve a single logical record, or you can code iterative logic to retrieve all
logical records that meet criteria specified in the WHERE clause. Additionally, you
can specify that the retrieved logical record be placed into an alternative
variable-storage location.

OBTAIN FIRST and OBTAIN NEXT: If an OBTAIN FIRST statement is followed
by an OBTAIN NEXT statement to retrieve a series of occurrences of the same logical
record, the OBTAIN statements must direct LRF to the same path. For this reason,
you must ensure that the selection criteria specified in the WHERE clauses that
accompany the OBTAIN FIRST and OBTAIN NEXT statements are identical.

It is best to use the OBTAIN FIRST/OBTAIN NEXT combination.

OBTAIN NEXT without OBTAIN FIRST: If the program initially issues an
OBTAIN NEXT statement without issuing an OBTAIN FIRST, or if the last path
status returned for the path was LR-NOT-FOUND, LRF interprets the OBTAIN NEXT
as OBTAIN FIRST.

Note: LRF does not interpret OBTAIN NEXT as OBTAIN FIRST in the following
situations:

■ After a path status of LR-FOUND

■ After a path status of LR-ERROR

19-12 CA-IDMS Logical Record Facility

19.3 Accessing logical records

■ After any DBA-defined path status

When retrieving logical records by specifying a symbolic- or CALC-key value, always
use the OBTAIN FIRST/OBTAIN NEXT combination.

Path statuses are explained in 19.4, “Testing for path status” on page 19-24 later in
this section.

Example: The example below shows a program that retrieves logical records. This
program obtains the first EMP-INS-LR logical record, checks the path status, and
obtains subsequent occurrences of the logical record by using the OBTAIN NEXT
statement.

PROCEDURE DIVISION.

 .

 .

OBTAIN FIRST EMP-INS-LR WHERE EMP-ID-�415 =
EMP-ID-�415 OF LR.

IF LR-STATUS = 'LR-ERROR' PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

 PERFORM A45�-NO-LR

 ELSE

PERFORM A4��-GET-NEXT-EMP-INS-REC THRU A4��-EXIT

UNTIL LR-STATUS = 'LR-NOT-FOUND'.

 .

 .

 .

A4��-GET-NEXT-EMP-INS-REC.

 .

 .

 .

OBTAIN NEXT EMP-INS-LR WHERE EMP-ID-�415 =
EMP-ID-�415 OF LR.

IF LR-STATUS = 'LR-ERROR' PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

GO TO A4��-EXIT.

 .

 .

 .

A4��-EXIT.

 EXIT.

19.3.2 Modifying logical records

To modify logical-record occurrences in the database, perform the following steps:

1. Either retrieve the logical record to be modified or initialize key fields, as
specified by the DBA in the LRDEFS report.

2. Issue the MODIFY statement, optionally specifying selection criteria in the
WHERE clause. The WHERE clause will be evaluated at the beginning and acts
as a security mechanism.

3. Test for all possible path statuses.

4. If LRF returns a path status of LR-ERROR, perform the IDMS-STATUS routine.

Field values: LRF uses the field values present in the variable-storage location
reserved for the logical record to update the appropriate database records. You can
optionally specify an alternative variable-storage location from which the changed field
values are to be taken.

Chapter 19. LRF Programming Techniques 19-13

19.3 Accessing logical records

The database record occurrences that are physically modified as a result of this
statement are specified by the DBA in the subschema modify path group. Depending
on the specifications of the DBA, database records that participate in logical records
can be left as is, modified, stored, or erased. Other DBA-determined conditions
related to the MODIFY statement include:

■ Whether you first need to OBTAIN a logical record before issuing the MODIFY
statement

■ WHERE clause arguments to be used

■ The number of modify paths for each logical record (for example, one MODIFY
path might require a keyword)

■ Path statuses to be returned to the program

Example: The example below shows a program that modifies a logical record. The
program modifies the employee address and phone number fields in the logical record
and issues the MODIFY statement. Note that the program checks for the
DBA-defined path status INVALID-MODIFY.

 DATA DIVISION.

 FILE SECTION.

 FD NEW-EMP-ADDRESS-FILE-IN.

 �1 NEW-EMP-ADDRESS-REC-IN.

 �2 EMP-ID-IN PIC 9(4).

 �2 NEW-ADDRESS-IN PIC X(46).

 �2 NEW-PHONE-IN PIC 9(1�).

 PROCEDURE DIVISION.

 .

 READ NEW-EMP-ADDRESS-FILE-IN.

AT END MOVE 'Y' TO EOF-SW.

PERFORM A3��-CHANGE-ADDRESS THRU A3��-EXIT

 UNTIL END-OF-FILE.

 FINISH.

 GOBACK.

 A3��-CHANGE-ADDRESS.

MOVE EMP-ID-IN TO EMP-ID-�415.

��� OBTAIN SPECIFIED LOGICAL RECORD ���

OBTAIN FIRST EMP-JOB-LR WHERE EMP-ID-�415 EQ

EMP-ID-�415 OF LR.

��� CHECK FOR PATH STATUSES ���

IF LR-STATUS = 'LR-ERROR'

 PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

 PERFORM A35�-EXCP-RPT

GO TO A3��-GET-NEXT.

 PERFORM U5��-WRITE-OLD-ADDRESS.

MOVE NEW-ADDRESS-IN TO EMP-ADDRESS-�415.

 MOVE NEW-PHONE-IN TO EMP-PHONE-�415.

��� MODIFY LOGICAL RECORD ���

 MODIFY EMP-JOB-LR.
 IF LR-STATUS = 'LR-ERROR'

 PERFORM IDMS-STATUS.
��� CHECK FOR DBA-DEFINED PATH STATUS ���

 IF LR-STATUS = 'INVALID-MODIFY'
 PERFORM A35�-EXCP-RPT.

 IF LR-STATUS = 'LR-NOT-FOUND'
 PERFORM A35�-EXCP-RPT.
 PERFORM U51�-WRITE-NEW-ADDRESS.

 A3��-GET-NEXT.

 READ NEW-EMP-ADDRESS-FILE-IN

AT END MOVE 'Y' TO EOF-SW.

 A3��-EXIT.

 EXIT.

19-14 CA-IDMS Logical Record Facility

19.3 Accessing logical records

19.3.3 Storing logical records

To store logical-record occurrences in the database, perform the following steps:

1. Either initialize key fields or perform other processing, as specified by the DBA in
the LRDEFS report.

2. Issue the STORE statement, optionally specifying selection criteria in the WHERE
clause. The WHERE clause will be evaluated at the beginning and acts as a
security mechanism.

3. Test for all possible path statuses.

4. If LRF returns a path status of LR-ERROR, perform the IDMS-STATUS routine.

LRF uses the field values present in the variable-storage location reserved for the
logical record to update the appropriate database records. You can optionally specify
an alternative variable-storage location from which the field values are to be taken.

STORE does not necessarily result in storing new occurrences of any of the database
records that participate in the logical record; the path selected to service a STORE
logical-record request performs whatever database-access operations the DBA has
specified to service the request. Depending on the DBA's specifications, database
records that participate in logical records can be left as is, modified, stored, or erased.

STORE conditions: Other DBA-determined conditions related to the STORE
statement include:

■ Whether you first need to OBTAIN a logical record before issuing the STORE
statement

■ WHERE clause arguments to be used

■ The number of store paths for each logical record (for example, one STORE path
might require a keyword)

■ Path statuses to be returned to the program

Example: The example below shows a program that stores a logical-record
occurrence. This program stores a new occurrence of the EMP-JOB-LR logical record.

Chapter 19. LRF Programming Techniques 19-15

19.3 Accessing logical records

 �1 NEW-EMP-REC-IN.

 �2 DEPT-ID-IN PIC 9(4).

 �2 EMP-ID-IN PIC 9(4).

 �2 NAME-IN PIC X(25).

 �2 ADDRESS-IN PIC X(46).

 �2 PHONE-IN PIC 9(1�).

 �2 STATUS-IN PIC X(2).

 �2 SS-NUMBER-IN PIC 9(9).

 �2 START-DATE-IN PIC 9(6).

 �2 BIRTH-DATE-IN PIC 9(6).

 PROCEDURE DIVISION.

 READ NEW-EMP-FILE-IN.

AT END MOVE 'Y' TO EOF-SW.

PERFORM A3��-STORE-EMP THRU A3��-EXIT

 UNTIL END-OF-FILE.

 .

 A3��-STORE-EMP.

MOVE DEPT-ID-IN TO DEPT-ID-�41�.

��� OBTAIN LR TO ESTABLISH CORRECT DEPARTMENT ���

OBTAIN FIRST EMP-JOB-LR WHERE DEPT-ID-�41� EQ

DEPT-ID-�41� OF LR.

IF LR-STATUS = 'LR-ERROR' PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

 PERFORM A35�-EXCP-RPT

GO TO A3��-GET-NEXT.

 PERFORM B3��-INITIALIZE-EMPLOYEE.

��� STORE LOGICAL RECORD ���

 STORE EMP-JOB-JR.
IF LR-STATUS = 'LR-ERROR' PERFORM IDMS-STATUS.
IF LR-STATUS = 'LR-NOT-FOUND'

 PERFORM A36�-STORE-EXCP-RPT
GO TO A3��-GET-NEXT.

��� CHECK FOR DBA-DEFINED PATH STATUS ���
IF LR-STATUS = 'INVALID-STORE'

 PERFORM A36�-STORE-EXCP-RPT
GO TO A3��-GET-NEXT.

 PERFORM U5��-WRITE-NEW-EMP-REPORT.

 A3��-GET-NEXT.

 READ NEW-EMP-FILE-IN

AT END MOVE 'Y' TO EOF-SW.

 A3��-EXIT.

 EXIT.

19.3.4 Erasing logical records

To delete a logical-record occurrence from the database, perform the following steps:

1. Either retrieve the logical record to be erased or initialize key fields, as specified
by the DBA in the LRDEFS report.

2. Issue the ERASE statement, optionally specifying selection criteria in the WHERE
clause. The WHERE clause will be evaluated at the beginning and acts as a
security mechanism.

3. Test for all possible path statuses.

4. If LRF returns a path status of LR-ERROR, perform the IDMS-STATUS routine.

Field values: LRF uses field values present in the variable-storage location reserved
for the logical record to update the database. You can optionally specify an alternative
variable-storage location from which the field values are to be taken (for example, if
the logical record was previously obtained using the INTO option).

ERASE does not necessarily result in the deletion of any of the database records that
participate in the logical record. The path selected to service an ERASE logical-record
request performs whatever database access operations the DBA has specified to service

19-16 CA-IDMS Logical Record Facility

19.3 Accessing logical records

the request. For example, if a DEPARTMENT loses an employee, the EMP-JOB-LR
logical record that contains information about that employee would be erased; other
information about the department would not be erased. That is, EMPLOYEE
information would be erased, but not DEPARTMENT, JOB, or OFFICE information.

Depending on the DBA's specifications, database records that participate in logical
records can be left as is, modified, stored, or erased.

ERASE conditions: Other DBA-determined conditions related to the ERASE
statement include:

■ Whether you first need to OBTAIN a logical record before issuing the ERASE
statement

■ WHERE clause arguments to be used

■ The number of ERASE paths for each logical record (for example, one ERASE
path might require a keyword)

■ Path statuses to be returned to the program

Example: The example below illustrates a program that deletes a logical-record
occurrence. This program OBTAINs the specified occurrence of the EMP-JOB-LR
logical record, and issues the ERASE statement. Note that the program checks the
DBA-defined path status INVALID-ERASE.

 DATA DIVISION.

 FILE SECTION.

 FD EMP-ERASE-FILE-IN.

 �1 EMP-ERASE-REC-IN.

 �2 EMP-ID-IN PIC 9(4).

 PROCEDURE DIVISION.

 .

 READ EMP-ERASE-FILE-IN.

AT END MOVE 'Y' TO EOF-SW.

PERFORM A3��-ERASE-EMP THRU A3��-EXIT

 UNTIL END-OF-FILE.

 FINISH.

 GOBACK.

 A3��-ERASE-EMP.

MOVE EMP-ID-IN TO EMP-ID-�415.

��� OBTAIN THE SPECIFIED LOGICAL RECORD ���

OBTAIN EMP-JOB-LR WHERE EMP-ID-�415 EQ

EMP-ID-�415 OF LR.

IF LR-STATUS = 'LR-ERROR' PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

 PERFORM A35�-EXCP-RPT

GO TO A3��-GET-NEXT.

 PERFORM B3��-ERASE-RPT.

��� ERASE THE LOGICAL RECORD ���

 ERASE EMP-JOB-JR.
IF LR-STATUS = 'LR-ERROR' PERFORM IDMS-STATUS.
IF LR-STATUS = 'LR-NOT-FOUND'

 PERFORM A35�-EXCP-RPT.
��� TEST FOR DBA-DEFINED PATH STATUS ���

IF LR-STATUS = 'INVALID-ERASE'
 PERFORM A35�-EXCP-RPT.
 A3��-GET-NEXT.

 READ EMP-ERASE-FILE-IN

AT END MOVE 'Y' TO EOF-SW.

 A3��-EXIT.

 EXIT.

Chapter 19. LRF Programming Techniques 19-17

19.3 Accessing logical records

19.3.5 Using the WHERE clause

You use the WHERE clause with any of the four logical-record database access
statements. The WHERE clause allows you to:

■ Direct the program to a path predefined in the subschema by the DBA. This
process is transparent to your program. Through the path, you can access the
database without issuing specific instructions for navigating the database.

■ Specify selection criteria to be applied to a logical record. The selection
criteria allow you to specify the set of logical-record occurrences to be accessed.
This reduces the need for you to inspect many logical-record occurrences in order
to isolate those of interest.

■ The WHERE clause will be evaluated at the beginning and acts as a security
mechanism.

The WHERE clause is issued in the form of an expression that consists of comparisons
and keywords connected by the boolean operators (AND, OR, and NOT). If a user
defined function is included in the expression, then it must not contain any external
calls. Any attempt to issue a DML or DC request in the user defined function may
cause a runtime abend to occur. Comparisons are presented below, followed by a
discussion of keywords and LRF coding techniques and path restrictions.

 19.3.5.1 Comparisons

WHERE clause comparisons perform comparison operations on operands included in
the WHERE clause expression. LRF uses the results of these operations to determine
the specific occurrences of a logical record to be accessed. Additionally, LRF directs
each logical-record request to an appropriate path in the subschema, depending on the
operands and operators included in the WHERE clause of the request.

Operands used in WHERE clause comparisons: The following table provides
examples of the operands that can be used in the WHERE clause.

Testing relationships: Operators included in a WHERE clause comparison can
specify that the following relationships between two operands be tested:

■ The value of the left operand contains the value of the right operand. Both

Operand Example

Literal WHERE EMP-ID-0415 = '0466'.

IDD-defined

program variable field
WHERE EMP-ID-0415 = IDD-EMP-ID-IN.

Logical-record field WHERE EMP-ID-0415 = EMP-ID-0415 OF LR.

Arithmetic expression WHERE SALARY-AMOUNT-0420 >
(AVERAGE-SAL-WK-FLD * 2).

19-18 CA-IDMS Logical Record Facility

19.3 Accessing logical records

operands included in the CONTAINS operator must be alphanumeric values and
elementary elements.

■ Each character in the left operand matches the corresponding character in the
right operand. The right operand functions as a mask. When MATCHES is
specified, LRF compares the left operand with the mask, one character at a time,
moving from left to right. The result of the match is either true or false: the result
is true if the end of the mask is reached before encountering a character in the left
operand that does not match a corresponding character in the mask; the result is
false if LRF encounters a character in the left operand that does not match a mask
character.

Three special characters can be used in the mask to perform pattern matching:

– @ can be matched with any alphabetic character

– # can be matched with any numeric character

– * can be matched with any alphabetic or numeric character; both the left
operand and the mask must be alphanumeric values (in COBOL, PIC X or 9
DISPLAY) and elementary elements

■ The value of the left operand is related to the value of the right operand in one of
the following ways:

 – Equal to

– Not equal to

 – Greater than

 – Less than

– Greater than or equal to

– Less than or equal to

Operations used in WHERE clause comparisons: The following table.
provides examples for each of the operators used in the WHERE clause.

Chapter 19. LRF Programming Techniques 19-19

19.3 Accessing logical records

A WHERE clause can contain as many comparisons and keywords as required to
specify the criteria to be applied to the logical record. If necessary, the value of the
SIZE parameter on the COPY IDMS SUBSCHEMA-LR-CTRL statement can be
increased to accommodate very large and complex WHERE clause specifications.

Evaluating the WHERE clause: LRF evaluates operations in a WHERE clause by
using the standard precedence of operators in the case of arithmetic expressions. In
other cases, it evaluates according to the order of appearance.

The standard precedence of operations is as follows:

1. Unary plus or minus

2. Multiplication or division

3. Addition or subtraction

Parentheses: Parentheses can be used to clarify a multiple-comparison expression
or to override the precedence of operations.

Numeric and alphanumeric literals: Numeric literals coded in the WHERE
clause and used by the path as CALC keys or sort keys must be enclosed in quotation
marks and include leading zeros. Alphanumeric literals used as CALC keys or sort
keys must be enclosed in quotation marks and padded with spaces. Numeric literals
that are defined as packed (COBOL COMP-3, PL/I fixed decimal) and used as CALC
keys or sort keys must be unquoted and include leading zeros.

Operation Example

Contains WHERE EMP-FIRST-NAME-0415
 CONTAINS 'SARA'.

Matches WHERE EMP-ZIP-FIRST-FIVE MATCHES '021##'.

Equal to WHERE EMP-ID-0415 EQ IDD-EMP-ID-IN.

Not equal to WHERE STATUS-0415 NE '05'.

Greater than WHERE START-YEAR-0415 GT '75'.

Less than WHERE START-YEAR-0415 LT '75'.

Greater than or equal to WHERE JOB-ID-0440 GE IDD-JOB-ID-IN.

Less than or equal to WHERE JOB-ID-0440 LE IDD-JOB-ID-IN.

AND WHERE EMP-ID-0415 EQ IDD-EMP-ID-IN
AND STATUS-0415 EQ '02'.

OR WHERE START-YEAR-0415 LT '75'
OR STATUS-0415 EQ '05'.

Arithmetic expression WHERE SALARY-AMOUNT-0420 >
(AVERAGE-SAL-WK-FLD * 2).

19-20 CA-IDMS Logical Record Facility

19.3 Accessing logical records

 19.3.5.2 Keywords

Keywords are names defined by the DBA to simplify processing of logical-record
requests. A keyword specified in the WHERE clause routes the request to the
subschema path that is associated with that keyword. The path contains logic to select
the appropriate logical-record occurrences.

DBA-defined keywords are often used to force a match between a program request and
an LRF path. Using keywords in this manner ensures that the program request
performs the logic coded in a specific path.

Keywords can also be used in place of detailed comparisons. In this case, the LRF
path performs all comparisons; you need only code a WHERE clause that uses that
keyword.

19.3.5.3 Coding techniques and path restrictions

Every logical-record request must direct LRF to an appropriate path in the subschema
before the request can be processed. Typically, the DBA codes a number of paths that
provide efficient access to the database based on the information included in the
WHERE clause. The DBA can also code paths that can be accessed regardless of the
contents of the request's WHERE clause. Such paths do not even require that requests
include a WHERE clause.

Note: You should not change the WHERE clause selection criteria between an
OBTAIN FIRST and an OBTAIN NEXT logical-record request.

A path can require that a WHERE clause name one or more of the following:

■ A particular keyword

■ A particular value that is used by the path as a CALC key, sort key, or db-key

■ A particular logical-record field of any kind

■ Any field within a particular logical-record element (that is, within a particular
database record)

When a logical-record request is issued, LRF searches through the subschema until it
finds a path whose requirements are met by the WHERE clause. LRF uses the first
such path it finds to process the request, regardless of whether the WHERE clause also
meets the requirements of other paths.

 19.3.6 Examples

The examples presented on the following pages illustrate various techniques for coding
WHERE clauses to meet different path requirements. Each example begins with DBA
comments (from the LRDEFS report) that describe the WHERE clause components
required to access a specific path. Following these comments, a number of statements
are listed, each of which would successfully access that path. (In some cases, invalid
solutions are illustrated for comparison.)

Chapter 19. LRF Programming Techniques 19-21

19.3 Accessing logical records

Using keywords: The DBA has written the following comments about a path:

THIS PATH WILL BE SELECTED IF THE KEYWORD

PROGRMR-ANALYSTS IS INCLUDED IN THE PROGRAM-REQUEST

WHERE CLAUSE.

THIS PATH OBTAINS AN OCCURRENCE OF THE EMP-JOB-LR LOGICAL

RECORD FOR EACH EMPLOYEE WHO IS A PROGRAMMER-ANALYST

(THAT IS, EACH EMPLOYEE WHO HAS A JOB-ID-�44� OF 3�25)

To access this path, you could code:

OBTAIN EMP-JOB-LR WHERE PROGRMR-ANALYSTS.

OBTAIN EMP-JOB-LR WHERE PROGRMR-ANALYSTS AND

OFFICE-CODE-�45� EQ '��1' AND

SKILL-LEVEL-�425 EQ '�4.

Keywords must be coded in an affirmative and logically conjunctive manner (that is,
do not code NOT or OR). The requests listed below would not access this path:

OBTAIN EMP-JOB-LR WHERE NOT PROGRMR-ANALYSTS.

OBTAIN EMP-JOB-LR WHERE PROGRMR-ANALYSTS OR

OFFICE-CODE-�45� EQ '��1'.

Using CALC keys: The DBA has written the following comments about a path:

THIS PATH WILL BE SELECTED IF THE FOLLOWING COMPARISON

IS INCLUDED IN THE PROGRAM-REQUEST WHERE CLAUSE:

EMP-ID-�415 = A LITERAL

A PROGRAM VARIABLE THAT HAS BEEN DEFINED TO IDD

A FIELD IN THE AREA RESERVED FOR THE LOGICAL

RECORD IN PROGRAM VARIABLE STORAGE (OF LR)

NOTE THAT THE EMP-ID-IN VALUE INCLUDED IN THE PROGRAM REQUEST

WHERE CLAUSE IS USED AS A CALC KEY BY THE PATH.

To access this path, you could code:

OBTAIN EMP-JOB-LR WHERE EMP-ID-�415 = '�447'.

OBTAIN EMP-JOB-LR WHERE EMP-ID-9415 = IDD-EMP-ID-IN.

OBTAIN EMP-JOB-LR WHERE EMP-ID-�415 =

EMP-ID-�415 OF LR.

OBTAIN EMP-JOB-LR WHERE EMP-ID-�415 = IDD-EMP-ID-IN

AND EMP-STATE-�415 = IDD-STATE-IN.

Logical-record fields that are used as CALC keys, sort keys, or db-keys in the
WHERE clause can only be used in an equality comparison with a single value.
Additionally, the WHERE clause must be logically conjunctive (for example, do not
code OR). The requests listed below would not access this path:

OBTAIN EMP-JOB-LR WHERE EMP-ID-�415 > '�447'.

OBTAIN EMP-JOB-LR WHERE EMP-ID-�415 = (IDD-EMP-ID-IN - 1).

OBTAIN EMP-JOB-LR WHERE (EMP-ID-�415 = '�466') OR

(EMP-LAST-NAME-�415 = 'JOHNSON ').

Non-key comparisons: The DBA has written the following comments about a
path:

19-22 CA-IDMS Logical Record Facility

19.3 Accessing logical records

THIS PATH WILL BE SELECTED IF THE FOLLOWING COMPARISON

IS INCLUDED IN THE PROGRAM-REQUEST WHERE CLAUSE:

SALARY-AMOUNT-�42� = A LITERAL

A PROGRAM VARIABLE THAT HAS BEEN DEFINED TO IDD

A FIELD IN THE AREA RESERVED FOR THE LOGICAL

RECORD IN PROGRAM VARIABLE STORAGE (OF LR)

AN ARITHMETIC EXPRESSION

ANY COMPARISON OPERATION CAN BE USED.

All comparisons are allowed for logical-record fields that are not used as CALC keys,
sort keys, or db-keys. To access this path, you could code:

OBTAIN EMP-JOB-LR WHERE SALARY-AMOUNT-�42� LT

(IDD-IN-AMT + IDD-ADJUST-VALUE).

OBTAIN EMP-JOB-LR WHERE

(SALARY-AMOUNT-�42� GT SALARY-AMOUNT-�42� OF LR)

OR (DESCRIPTION-�44� CONTAINS 'TOP SECRET').

OBTAIN EMP-JOB-LR WHERE

(JOB-ID-�44� MATCHES 'A###') AND NOT

(SALARY-AMOUNT-�42� LT (IDD-IN-AMT + IDD-ADJUST-VALUE)).

Non-key comparisons: The DBA has written the following comments about a
path:

THIS PATH WILL BE SELECTED IF THE FOLLOWING COMPARISON

IS INCLUDED IN THE PROGRAM-REQUEST WHERE CLAUSE:

ANY FIELD FROM

THE EMPLOYEE RECORD

OF EMP-JOB-LR = A LITERAL

A PROGRAM VARIABLE THAT HAS BEEN DEFINED TO IDD

A FIELD IN THE AREA RESERVED FOR THE LOGICAL

RECORD IN PROGRAM VARIABLE STORAGE (OF LR)

AN ARITHMETIC EXPRESSION

ANY COMPARISON OPERATION CAN BE USED.

All comparisons are allowed for database records that participate as elements in logical
records. To access this path, you could code:

OBTAIN EMP-JOB-LR WHERE EMP-LAST-NAME-�415 =

EMP-LAST-NAME-�415 OF LR.

OBTAIN EMP-JOB-LR WHERE EMP-ZIP-FIRST-FIVE EQ '582�1'.

OBTAIN EMP-JOB-LR WHERE EMP-LAST-NAME-�415 MATCHES 'C@@@@@@@@@@@@@@'.

Generic retrieval: The DBA has written the following comments about a path:

THIS PATH WILL BE SELECTED FOR ALL OTHER PROGRAM REQUESTS.

Any valid logical-record retrieval request can access this path.

A request that contains no WHERE clause can be processed only by this type of path.
To access this path, you could code:

OBTAIN EMP-JOB-LR.

OBTAIN EMP-JOB-LR WHERE DESCRIPTION-�44� CONTAINS 'WEATHER'.

Chapter 19. LRF Programming Techniques 19-23

19.4 Testing for path status

19.4 Testing for path status

LRF returns a specific path status to the LR-STATUS field of the program's LRC
block to indicate the result of each logical-record request. You can examine this
information and use it to determine further processing.

1- to 16-character string: Each path status is 1- to 16-character string; it can be
defined by either the system or the DBA. You should check the path status after
every call to LRF by using either the host-language IF statement or the ON clause
(explained later in this section). Additionally, a path status may indicate that LRF has
returned a partial logical record as defined by the DBA.

System-defined path statuses, DBA-defined path statuses, the ON clause, and partial
logical records are discussed below, followed by examples of path status testing.

19.4.1 System-defined path statuses

There are three system-defined path statuses:

■ LR-FOUND is returned when the logical-record request has been executed
successfully. This status can be returned in response to any of the four LRF DML
statements. When LR-FOUND is returned, the ERROR-STATUS field of the
IDMS communications block contains 0000.

■ LR-NOT-FOUND is returned when the logical record specified cannot be found,
either because no such record exists or because all logical-record occurrences have
already been retrieved. LR-NOT-FOUND can be returned in response to any of
the four LRF DML statements, provided that the path to which LRF is directed
includes retrieval logic. When LR-NOT-FOUND is returned, the
ERROR-STATUS field of the IDMS communications block contains 0000.

You should always check for LR-NOT-FOUND; if this path status is returned, you
should take appropriate action based on the fact that LRF could not find the
requested logical record.

Note: A successful STORE, MODIFY, or ERASE can return a status of
LR-NOT-FOUND if its WHERE clause does not evaluate at the start.

■ LR-ERROR is returned when a logical-record request is issued incorrectly or
when an error occurs in the processing of the path selected to service the request.
When LR-ERROR is returned, the type of error-status code returned to the
program in the ERROR-STATUS field of the IDMS communications block differs
according to the type of error:

– When the error occurs in the logical-record request, the ERROR-STATUS
field contains an error-status code issued by LRF (major code of 20).

– When an error occurs in the logical-record path processing, the
ERROR-STATUS field contains an error-status code issued by the DBMS
(major code from 00 to 19).

19-24 CA-IDMS Logical Record Facility

19.4 Testing for path status

Note: When a logical record detects a deadlock condition and returns a
DBA-defined path status, the error status field contains '0000' (not 'XX29')
and bind errors occur during CA-ADS deadlock handling. Allow the path
status to default to LR-ERROR to ensure that error status is 'XX29' which
will be recognized by CA-ADS as well as the dialog which issued the
request.

You should always check for LR-ERROR; if LR-ERROR is returned, you should
perform an error routine, such as IDMS-STATUS, before initiating error recovery
or aborting the program.

19.4.2 DBA-defined path statuses

The DBA can define additional path statuses in the subschema path group. Typically,
these statuses are documented in the subschema comments, which can be retrieved by
using the LRDEFS parameter of the IDMSRPTS utility. The LRDEFS report should
indicate:

■ All DBA-defined path statuses

■ Conditions under which DBA-defined path statuses will be returned

■ Program action required for each DBA-defined path status

Unless the DBA has specified otherwise, you should test for LR-ERROR before
testing for any DBA-defined path statuses.

Note: Programs that issue OBTAIN NEXT requests (allowing OBTAIN NEXT to
default to OBTAIN FIRST) should always be sure that LR-NOT-FOUND has
been returned for a logical record before OBTAIN NEXT is issued for a
different logical record. This also applies to DBA-defined path statuses.

19.4.3 The ON clause

Every LRF DML statement can include an ON clause. The ON clause can be defined
to test for a specific path status following an LRF request.

The ON clause of a logical-record request consists of:

■ A system- or DBA-defined path status

■ An imperative statement directing the program to execute some function based on
the result of the test

If LRF returns the path status specified in the ON clause, the imperative statement is
executed. If the specified path status is not returned, control is passed as follows:

■ In COBOL and PL/I, the program performs the IDMS-STATUS routine; this
routine will abort the program if a logical-record error (LR-ERROR) has occurred.

■ In Assembler, control is passed to the next statement in the program.

Chapter 19. LRF Programming Techniques 19-25

19.4 Testing for path status

19.4.4 Partial logical records

LRF is sometimes unable to retrieve all data required to provide the requested logical
record. In such cases the DBA can specify that LRF should return that portion of the
logical record that it was able to obtain. That portion that is returned is referred to as
a partial logical record. Typically, you are advised of this condition in a DBA-defined
path status.

Keep in mind that those fields in program variable storage for which LRF was unable
to provide data can contain values placed there by a previous logical-record request. It
is your responsibility to recognize this condition by testing explicitly for a path status
that indicates the return of a partial logical record and proceed accordingly.

The example below shows one possible response to partial logical records. Following
the LRF request, the program tests for the system-defined path statuses LR-ERROR
and LR-NOT-FOUND; it then tests for the DBA-defined path statuses
EMP-NOT-FOUND and PARTIAL-LR. IF PARTIAL-LR is returned, the program
performs a routine to clear variable-storage fields of any data that remains there from a
previous logical-record request.

OBTAIN NEXT EMP-JOB-LR

WHERE EMP-ID-�415 = IDD-EMP-ID-IN.

IF LR-STATUS = 'LR-ERROR'

 PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

MOVE 'N' TO LRF-SW

GO TO A2��-EXIT.

IF LR-STATUS = 'EMP-NOT-FOUND'

 PERFORM A2��-EMP-NOT-FOUND

GO TO A2��-EXIT.

IF LR-STATUS = 'PARTIAL-LR'

 PERFORM A2��-CLEAR-OLD-DATA.

19.4.5 Path status examples

The following examples test for either LR-ERROR or LR-FOUND, LR-NOT-FOUND
(where appropriate), and one or more DBA-defined path statuses.

OBTAIN path statuses: This example retrieves logical-record occurrences for a
specified employee id. After the OBTAIN statement, the program checks for:

 ■ LR-FOUND

 ■ LR-ERROR

 ■ LR-NOT-FOUND

 ■ EMP-NOT-FOUND

 ■ NO-DEPT

 ■ NO-OFFICE

 ■ NO-JOBS

19-26 CA-IDMS Logical Record Facility

19.4 Testing for path status

 A2��-GET-ALL.

OBTAIN NEXT EMP-JOB-LR

WHERE EMP-ID-�415 = IDD-EMP-ID-IN.

IF LR-STATUS = 'LR-FOUND'

 NEXT SENTENCE

 ELSE

PERFORM A22�-CHECK-PATH-STATUS THRU A22�-EXIT.

IF LRF-SW = 'N' GO TO A2��-EXIT.

 PERFORM U���-FORMAT.

 PERFORM U1��-WRITE-LINE.

 A2��-EXIT.

 EXIT.

 .

 .

 .

 A22�-CHECK-PATH-STATUS.

IF LR-STATUS = 'LR-ERROR'

 PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

MOVE 'N' TO LRF-SW

GO TO A22�-EXIT.

IF LR-STATUS = 'EMP-NOT-FOUND'

 PERFORM A22�-EMP-NOT-FOUND

GO TO A22�-EXIT.

IF LR-STATUS = 'NO-DEPT'

 PERFORM A22�-NO-DEPT.

GO TO A22�-EXIT.

IF LR-STATUS = 'NO-OFFICE'

 PERFORM A22�-NO-OFFICE.

GO TO A22�-EXIT.

IF LR-STATUS = 'NO-JOBS'

 PERFORM A22�-NO-JOBS.

GO TO A22�-EXIT.

 A22�-EXIT.

 EXIT.

MODIFY path statuses: This example requires the keyword MODIFY-EMP to
access the correct MODIFY path. After the MODIFY statement, the program checks
for:

 ■ LR-ERROR

 ■ LR-NOT-FOUND

 ■ NOT-CURRENT

 ■ NO-KEY-MOD

 A2��-MOD-EMP.

OBTAIN FIRST EMP-JOB-LR

WHERE EMP-ID-�415 = IDD-MOD-EMP-ID-IN.

IF LR-STATUS = 'LR-FOUND'

 NEXT SENTENCE

 ELSE

PERFORM A22�-CHECK-PATH-STATUS THRU A22�-EXIT.

MOVE NEW-ADDRESS-IN TO EMP-ADDRESS-�415.

 MOVE NEW-PHONE-IN TO EMP-PHONE-�415.

MODIFY EMP-JOB-LR WHERE MODIFY-EMP.

IF LR-STATUS = 'LR-ERROR'

 PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

 PERFORM A22�-NOT-FOUND

GO TO A2��-EXIT.

IF LR-STATUS = 'NOT-CURRENT'

 PERFORM A22�-NOT-CURRENT

GO TO A2��-EXIT.

IF LR-STATUS = 'NO-KEY-MOD'

 PERFORM A22�-NO-KEY-MOD

GO TO A2��-EXIT.

 PERFORM U���-FORMAT-MOD-RPT.

 PERFORM U1��-WRITE-LINE.

 A2��-EXIT.

 EXIT.

Chapter 19. LRF Programming Techniques 19-27

19.4 Testing for path status

STORE path statuses: This example requires the program to pass DEPT-ID-0410
in the WHERE clause; it does not require a previous OBTAIN statement. After the
STORE statement, the program checks for:

 ■ LR-ERROR

 ■ LR-NOT-FOUND

 ■ DUP-EMP-ID

 ■ INVALID-DEPT-ID

 A2��-STORE-EMP.

 PERFORM A21�-INITIALIZE-EMP.

MOVE DEPT-ID-IN TO DEPT-ID-�41�.

 STORE EMP-JOB-LR

WHERE DEPT-ID-�41� = DEPT-ID-�41� OF LR.

IF LR-STATUS = 'LR-ERROR'

 PERFORM IDMS-STATUS.

IF LR-STATUS = 'LR-NOT-FOUND'

 PERFORM A22�-LR-NOT-FOUND

GO TO A2��-EXIT.

IF LR-STATUS = 'DUP-EMP-ID'

 PERFORM A22�-DUP-EMP-ID

GO TO A2��-EXIT.

IF LR-STATUS = 'INVALID-DEPT-ID'

 PERFORM A22�-INVALID-DEPT-ID

GO TO A2��-EXIT.

 PERFORM U���-FORMAT-STORE-RPT.

 PERFORM U1��-WRITE-LINE.

 A2��-EXIT.

 EXIT.

ERASE path statuses: This example requires the program to OBTAIN the
requested occurrence of the EMP-JOB-LR logical record before executing the ERASE
statement. After the ERASE statement, the program checks for:

 ■ LR-ERROR

 ■ INVALID-ERASE

 A2��-STORE-EMP.

OBTAIN FIRST EMP-JOB-LR

WHERE EMP-ID-�415 = IDD-DEL-EMP-ID-IN.

IF LR-STATUS = 'LR-FOUND'

 NEXT SENTENCE

 ELSE

PERFORM A22�-CHECK-PATH-STATUS THRU A22�-EXIT.

 PERFORM U���-FORMAT-ERASE-RPT.

 ERASE EMP-JOB-LR.

IF LR-STATUS = 'LR-ERROR'

 PERFORM IDMS-STATUS.

IF LR-STATUS = 'INVALID-ERASE'

 PERFORM A22�-INVALID-ERASE

GO TO A2��-EXIT.

 PERFORM U1��-WRITE-LINE.

 A2��-EXIT.

 EXIT.

19-28 CA-IDMS Logical Record Facility

Appendix A. Sample Subschema EMPLR35

Appendix A. Sample Subschema EMPLR35 A-1

A-2 CA-IDMS Logical Record Facility

Overview: The EMPLR35 subschema defines the logical record EMP-INFO-LR,
which can be accessed through an OBTAIN path group.

Subschema listing: Below is the subschema compiler listing for this subschema.

 ADD

SUBSCHEMA NAME IS EMPLR35 OF SCHEMA NAME IS EMPSCHM VERSION IS 1

�+ DATE CREATED IS �7/17/91

�+ TIME CREATED IS �9�1�3�3

�+ DATE LAST UPDATED IS �8/27/91

�+ TIME LAST UPDATED IS 17�638�9

�+ PREPARED BY DEH

�+ REVISED BY DEH

DESCRIPTION IS 'SAMPLE SUBSCHEMA FOR LRF MANUAL'

PUBLIC ACCESS IS ALLOWED FOR ALL

USAGE IS LR

LR CURRENCY NO RESET

 .

 ADD

AREA NAME IS EMP-DEMO-REGION

 .

 ADD

AREA NAME IS ORG-DEMO-REGION

 .

 ADD

RECORD NAME IS EMPLOYEE

ELEMENTS ARE EMP-ID-�415 EMP-NAME-�415 START-DATE-�415 STATUS-�415

 .

 ADD

RECORD NAME IS DEPARTMENT

ELEMENTS ARE DEPT-ID-�41� DEPT-NAME-�41�

 .

 ADD

RECORD NAME IS OFFICE

ELEMENTS ARE OFFICE-CODE-�45�

 .

 ADD

SET NAME IS EMP-NAME-NDX

 .

 ADD

SET NAME IS DEPT-EMPLOYEE

 .

 ADD

SET NAME IS OFFICE-EMPLOYEE

 .

 ADD

LOGICAL RECORD NAME IS EMP-INFO-LR

ON LR-ERROR CLEAR

ON LR-NOT-FOUND CLEAR

 ELEMENTS ARE

 EMPLOYEE

 DEPARTMENT

 OFFICE

PATHREC VERSION 1

Appendix A. Sample Subschema EMPLR35 A-3

 COMMENTS

 '���'

- 'THE EMP-INFO-LR LOGICAL RECORD ACCESSES INFORMATION FROM THE'

- 'EMPLOYEE DATABASE RECORD AND ALSO ACCESSES INFORMATION'

- 'FROM THE ASSOCIATED DEPARTMENT AND OFFICE RECORDS.'

 - ' '

- 'THE FOLLOWING INFORMATION IS RETURNED TO THE PROGRAM, IN'

- 'THE ORDER SHOWN BELOW:'

 - ' '

- ' EMPLOYEE RECORD ── EMP-ID-�415, EMP-NAME-�415, START-DATE-�'

 + '415'

 - ' STATUS-�415'

 - ' '

- ' DEPARTMENT RECORD ── DEPT-ID-�44�, DEPT-NAME-�44�'

 - ' '

 - ' OFFICE RECORD ── OFFICE-CODE-�45�'

- ' PATHREC VERSION 1 ── WORK-PATH-ID'

 - ' '

- ' NOTE THAT THE WORK-PATH-ID FIELD INDICATES WHICH PATH'

 - ' WAS EXECUTED.'

 - '���'

 - ' '

- 'LR VERBS ALLOWED: OBTAIN'

 - ' '

 - '���'

 - ' '

- 'SELECTION CRITERIA (TOTAL OF FIVE PATHS)'

 - ' '

- ' OBTAIN PATH GROUP:'

 - ' '

 - ' '

- ' PATH 1) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR ALL EMPLOYEES WHO ARE'

 - ' ON LEAVE.'

 - ' '

- ' THE PATH WILL BE SELECTED IF THE PROGRAM'

- ' REQUEST INCLUDES THE KEYWORD ON-LEAVE.'

 - ' '

- ' IF PATH 1 IS SELECTED, THE VALUE OF THE'

- ' WORK-PATH-ID FIELD WILL BE "PATH 1".'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED WITH'

 - ' A DEPARTMENT'

- ' NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO AN'

 - ' OFFICE'

 - ' '

 - ' '

A-4 CA-IDMS Logical Record Facility

- ' PATH 2) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR A PARTICULAR EMPLOYEE.'

- ' IT USES THE EMP-ID-�415 FIELD AS A'

- ' CALC KEY TO ACCESS EMPLOYEE INFORMATION.'

 - ' '

- ' THE PATH WILL BE SELECTED IF ANY OF THESE'

- ' COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE'

 - ' CLAUSE:'

 - ' '

- ' EMP-ID-�415 = A NUMERIC LITERAL'

- ' A PROGRAM VARIABLE'

- ' A FIELD IN THE LOGICAL-RECORD'

- ' AREA OF PROGRAM VARIABLE STORAGE'

 - ' '

- ' IF PATH 2 IS SELECTED, THE VALUE OF THE'

- ' WORK-PATH-ID FIELD WILL BE "PATH 2".'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' INVALID-ID ── THE INPUT EMPLOYEE ID IS INVALID'

- ' NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED WITH'

 - ' A DEPARTMENT'

- ' NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO AN'

 - ' OFFICE'

 - ' '

 - ' '

- ' PATH 3) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR EACH EMPLOYEE IN A'

- ' PARTICULAR DEPARTMENT. IT USES THE DEPT-ID-�41�'

- ' FIELD AS A CALC KEY TO ACCESS DEPARTMENT'

 - ' INFORMATION.'

 - ' '

 - ' '

- ' THE PATH WILL BE SELECTED IF ANY OF THESE'

- ' COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE'

 - ' CLAUSE:'

 - ' '

 - ' DEPT-ID-�44� ='

 - ' '

 - ' A LITERAL'

- ' A PROGRAM VARIABLE'

- ' A FIELD IN THE LOGICAL-RECORD'

- ' AREA OF PROGRAM VARIABLE STORAGE'

 - ' '

- ' IF PATH 3 IS SELECTED, THE VALUE OF THE'

- ' WORK-PATH-ID FIELD WILL BE "PATH 3".'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' INVALID-DEPT ── THE INPUT DEPARTMENT ID IS INVALID'

- ' NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO AN'

 - ' OFFICE'

Appendix A. Sample Subschema EMPLR35 A-5

 - ' '

 - ' '

- ' PATH 4) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR EACH EMPLOYEE ASSIGNED TO'

- ' A PARTICULAR OFFICE.'

- ' IT USES THE OFFICE-CODE-�45� FIELD AS A CALC'

- ' KEY TO ACCESS OFFICE INFORMATION.'

 - ' '

- ' THE PATH WILL BE SELECTED IF ANY OF THESE'

- ' COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE'

 - ' CLAUSE:'

 - ' '

 - ' OFFICE-CODE-�45� ='

 - ' '

 - ' A LITERAL'

- ' A PROGRAM VARIABLE'

- ' A FIELD IN THE LOGICAL-RECORD'

- ' AREA OF PROGRAM VARIABLE STORAGE'

 - ' '

- ' IF PATH 4 IS SELECTED, THE VALUE OF THE'

- ' WORK-PATH-ID FIELD WILL BE "PATH 4".'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' INVALID-OFFICE ── THE INPUT OFFICE CODE IS INVALID'

- ' NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED'

- ' WITH A DEPARTMENT'

 - ' '

 - ' '

- ' PATH 5) THIS PATH RETRIEVES EMPLOYEE, DEPARTMENT, AND'

- ' OFFICE INFORMATION FOR A PARTICULAR EMPLOYEE.'

- ' IT USES THE EMP-NAME-NDX TO ACCESS EMPLOYEE'

 - ' INFORMATION.'

 - ' '

- ' THE PATH WILL BE SELECTED IF EITHER OF THESE'

- ' FIELDS ARE REFERENCED IN THE PROGRAM WHERE'

 - ' CLAUSE:'

 - ' '

- ' EMP-LAST-NAME-�415 AND EMP-FIRST-NAME-�415'

 - ' '

 - ' EMP-LAST-NAME-�415'

 - ' '

- ' IF PATH 5 IS SELECTED, THE VALUE OF THE'

- ' WORK-PATH-ID FIELD WILL BE "PATH 5".'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' INVALID-NAME ── THE INPUT EMPLOYEE NAME IS'

 - ' INVALID'

- ' NO-DEPT ── THE EMPLOYEE IS NOT ASSOCIATED'

- ' WITH A DEPARTMENT'

- ' NO-OFFICE ── THE EMPLOYEE IS NOT ASSIGNED TO'

 - ' AN OFFICE'

A-6 CA-IDMS Logical Record Facility

 - ' '

 - ' '

 .

 ADD

PATH-GROUP NAME IS OBTAIN EMP-INFO-LR

SELECT FOR KEYWORD ON-LEAVE

COMPUTE WORK-PATH-ID OF LR EQ 'PATH 1'

ON ���� NEXT

OBTAIN EACH EMPLOYEE WITHIN EMP-NAME-NDX

WHERE STATUS-�415 EQ '�4'

ON ���� NEXT

ON �3�7 ITERATE

IF DEPT-EMPLOYEE MEMBER

ON 16�1 RETURN NO-DEPT

ON ���� NEXT

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

FIND CURRENT EMPLOYEE

ON ���� NEXT

IF OFFICE-EMPLOYEE MEMBER

ON 16�1 RETURN NO-OFFICE

ON ���� NEXT

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

COMPUTE WORK-PATH-ID OF LR EQ 'PATH 2'

ON ���� NEXT

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

ON �326 RETURN INVALID-ID

ON ���� NEXT

IF DEPT-EMPLOYEE MEMBER

ON 16�1 RETURN NO-DEPT

ON ���� NEXT

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

FIND CURRENT EMPLOYEE

ON ���� NEXT

IF OFFICE-EMPLOYEE MEMBER

ON 16�1 RETURN NO-OFFICE

ON ���� NEXT

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

SELECT FOR FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT

COMPUTE WORK-PATH-ID OF LR EQ 'PATH 3'

ON ���� NEXT

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

ON �326 RETURN INVALID-DEPT

ON ���� NEXT

Appendix A. Sample Subschema EMPLR35 A-7

OBTAIN EACH EMPLOYEE WITHIN DEPT-EMPLOYEE

ON ���� NEXT

ON �3�7 ITERATE

IF OFFICE-EMPLOYEE MEMBER

ON 16�1 RETURN NO-OFFICE

ON ���� NEXT

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

SELECT FOR FIELDNAME-EQ OFFICE-CODE-�45� OF OFFICE

COMPUTE WORK-PATH-ID OF LR EQ 'PATH 4'

ON ���� NEXT

OBTAIN FIRST OFFICE

WHERE CALCKEY EQ OFFICE-CODE-�45� OF REQUEST

ON �326 RETURN INVALID-OFFICE

ON ���� NEXT

OBTAIN EACH EMPLOYEE WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

ON �3�7 ITERATE

IF DEPT-EMPLOYEE MEMBER

ON 16�1 RETURN NO-DEPT

ON ���� NEXT

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

SELECT USING INDEX EMP-NAME-NDX

FOR FIELDNAME EMP-LAST-NAME-�415 OF EMPLOYEE FIELDNAME

EMP-FIRST-NAME-�415 OF EMPLOYEE

SELECT USING INDEX EMP-NAME-NDX

FOR FIELDNAME EMP-LAST-NAME-�415 OF EMPLOYEE

COMPUTE WORK-PATH-ID OF LR EQ 'PATH 5'

ON ���� NEXT

OBTAIN EACH EMPLOYEE USING INDEX

ON ���� NEXT

ON �326 RETURN INVALID-NAME

IF DEPT-EMPLOYEE MEMBER

ON 16�1 RETURN NO-DEPT

ON ���� NEXT

OBTAIN OWNER WITHIN DEPT-EMPLOYEE

ON ���� NEXT

FIND CURRENT EMPLOYEE

ON ���� NEXT

IF OFFICE-EMPLOYEE MEMBER

ON 16�1 RETURN NO-OFFICE

ON ���� NEXT

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE

ON ���� NEXT

 .

� � � END OF DATA � � �

A-8 CA-IDMS Logical Record Facility

Appendix B. Sample Subschema EMPLR40

Appendix B. Sample Subschema EMPLR40 B-1

B-2 CA-IDMS Logical Record Facility

Overview: The EMPLR40 subschema defines the logical records EMPMOD-LR and
EMPTRANS-LR. Both of these logical records can be accessed through OBTAIN and
MODIFY path groups.

Subschema listing: Below is the subschema compiler listing for this subschema.

 ADD

SUBSCHEMA NAME IS EMPLR4� OF SCHEMA NAME IS EMPSCHM VERSION IS 1

 �+ DATE CREATED IS �7/18/91

 �+ TIME CREATED IS 11555265

 �+ DATE LAST UPDATED IS �7/23/91

 �+ TIME LAST UPDATED IS 1626�845

 �+ PREPARED BY DEH

 �+ REVISED BY DEH

DESCRIPTION IS 'SAMPLE SUBSCHEMA FOR LRF MANUAL'

PUBLIC ACCESS IS ALLOWED FOR ALL

USAGE IS LR

LR CURRENCY NO RESET

 �+ USED BY: PROGRAM IS MOD-D VERSION IS 1

 �+ USED BY: PROGRAM IS STORE-D VERSION IS 1

 �+ USED BY: PROGRAM IS TRANS-D VERSION IS 1

 .

 ADD

AREA NAME IS EMP-DEMO-REGION

 .

 ADD

AREA NAME IS ORG-DEMO-REGION

 .

 ADD

RECORD NAME IS DEPARTMENT

ELEMENTS ARE DEPT-ID-�41� DEPT-NAME-�41�

 .

 ADD

RECORD NAME IS OFFICE

ELEMENTS ARE OFFICE-CODE-�45�

 .

 ADD

RECORD NAME IS EMPLOYEE

 .

 ADD

SET NAME IS DEPT-EMPLOYEE

 .

 ADD

SET NAME IS OFFICE-EMPLOYEE

 .

 ADD

SET NAME IS EMP-NAME-NDX

 .

 ADD

LOGICAL RECORD NAME IS EMP-LR

ON LR-ERROR CLEAR

ON LR-NOT-FOUND CLEAR

 ELEMENTS ARE

 EMPLOYEE

 DEPARTMENT

 OFFICE

Appendix B. Sample Subschema EMPLR40 B-3

 COMMENTS

 '���'

- 'THE EMP-LR LOGICAL RECORD LETS YOU STORE A NEW EMPLOYEE RECORD'

- 'AND MODIFY AN EXISTING EMPLOYEE RECORD.'

 - ' '

- 'TO STORE A NEW EMPLOYEE RECORD:'

 - ' '

- ' 1) EXECUTE OBTAIN PATH 1, USING A VALID DEPARTMENT ID'

- ' AND OFFICE CODE. THIS PATH SETS CURRENCY ON THE'

- ' APPROPRIATE DEPARTMENT AND OFFICE RECORDS.'

 - ' '

- ' 2) EXECUTE STORE PATH 1. THIS PATH USES THE CURRENCIES'

- ' ESTABLISHED PREVIOUSLY TO STORE THE NEW EMPLOYEE RECORD.'

- ' BE SURE THE NEW EMPLOYEE INFORMATION IS IN THE'

- ' LOGICAL-RECORD AREA OF PROGRAM VARIABLE STORAGE.'

 - ' '

- 'TO MODIFY AN EXISTING EMPLOYEE RECORD:'

 - ' '

- ' 1) EXECUTE OBTAIN PATH 2, USING A VALID EMPLOYEE ID.'

- ' THIS PATH RETRIEVES ALL EMPLOYEE INFORMATION.'

 - ' '

- ' 2) MAKE THE NECESSARY CHANGES TO THE EMPLOYEE INFORMATION.'

 - ' '

- ' 3) EXECUTE MODIFY PATH 1. THIS PATH MODIFIES THE'

- ' EMPLOYEE RECORD AS SPECIFIED.'

 - ' '

 - ' '

 - '���'

 - ' '

- 'LR VERBS ALLOWED: OBTAIN, STORE, MODIFY'

 - ' '

 - '���'

 - ' '

- ' OBTAIN PATH GROUP:'

 - ' '

- ' SELECTION CRITERIA (TOTAL OF TWO PATHS)'

 - ' '

 - ' '

- ' PATH 1) THIS PATH SETS CURRENCY ON THE APPROPRIATE'

- ' DEPARTMENT AND OFFICE RECORDS BEFORE A NEW'

- ' EMPLOYEE RECORD IS STORED.'

 - ' '

- ' THE PATH WILL BE SELECTED IF ANY OF THESE'

- ' COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE'

B-4 CA-IDMS Logical Record Facility

 - ' CLAUSE:'

 - ' '

- ' DEPT-ID-�41� AND OFFICE=CODE-�45� ='

 - ' '

 - ' A LITERAL'

- ' A PROGRAM VARIABLE'

- ' A FIELD IN THE LOGICAL-RECORD'

- ' AREA OF PROGRAM VARIABLE STORAGE'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' INVALID-DEPT ── THE INPUT DEPARTMENT ID IS'

 - ' INVALID'

- ' INVALID-OFFICE ── THE INPUT OFFICE CODE IS'

 - ' INVALID'

 - ' '

 - ' '

- ' PATH 2) THIS PATH RETRIEVES ALL EMPLOYEE INFORMATION'

- ' FOR A PARTICULAR EMPLOYEE. ONCE THIS'

- ' INFORMATION IS RETRIEVED, IT CAN BE'

- ' MODIFIED. NOTE THAT THE PATH USES THE'

- ' EMP-ID-�415 FIELD AS A CALC KEY TO ACCESS'

 - ' THIS INFORMATION.'

 - ' '

- ' THE PATH WILL BE SELECTED IF ANY OF THESE'

- ' COMPARISONS ARE INCLUDED IN THE PROGRAM WHERE'

 - ' CLAUSE:'

 - ' '

 - ' EMP-ID-�41� ='

 - ' '

 - ' A LITERAL'

- ' A PROGRAM VARIABLE'

- ' A FIELD IN THE LOGICAL-RECORD'

- ' AREA OF PROGRAM VARIABLE STORAGE'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUS:'

 - ' '

- ' NO-EMP ── THE REQUESTED EMPLOYEE CANNOT'

 - ' BE FOUND'

 - ' '

 - ' '

- ' STORE PATH GROUP:'

 - ' '

- ' SELECTION CRITERIA (TOTAL OF ONE PATH)'

 - ' '

 - ' '

Appendix B. Sample Subschema EMPLR40 B-5

- ' THIS PATH STORES A NEW EMPLOYEE RECORD.'

- ' TO STORE AN EMPLOYEE, YOU MUST FIRST'

- ' SELECT OBTAIN PATH 1.'

 - ' '

- ' THE PATH WILL BE SELECTED IF THE PROGRAM'

- ' REQUEST INCLUDES THE KEYWORD STORE-EMP.'

 - ' '

- ' IT DOES NOT RETURN ANY DBA-DEFINED'

 - ' PATH STATUSES.'

 - ' '

 - ' '

- ' MODIFY PATH GROUP:'

 - ' '

- ' SELECTION CRITERIA (TOTAL OF ONE PATH)'

 - ' '

 - ' '

- ' THIS PATH MODIFIES AN EXISTING EMPLOYEE RECORD'

- ' AS SPECIFIED BY THE APPLICATION PROGRAM.'

 - ' '

- ' THE PATH WILL BE SELECTED IF THE PROGRAM'

- ' REQUEST INCLUDES THE KEYWORD MOD-EMP.'

 - ' '

- ' IT DOES NOT RETURN ANY DBA-DEFINED'

 - ' PATH STATUSES.'

 - ' '

 - ' '

 .

 ADD

LOGICAL RECORD NAME IS EMP-TRANS-LR

ON LR-ERROR CLEAR

ON LR-NOT-FOUND CLEAR

 ELEMENTS ARE

 EMPLOYEE

DEPARTMENT ROLE IS OLD-DEPT

DEPARTMENT ROLE IS NEW-DEPT

 COMMENTS

 '���'

- 'THE EMP-TRANS-LR LOGICAL RECORD MODIFIES THE RELATIONSHIP'

- 'BETWEEN AN EXISTING EMPLOYEE AND HIS OR HER DEPARTMENT.'

- 'IT IS USED TO PROCESS AN EMPLOYEE TRANSFER FROM ONE'

- 'DEPARTMENT TO ANOTHER.'

 - ' '

 - ' '

 - '���'

 - ' '

- 'LR VERBS ALLOWED: MODIFY'

 - ' '

 - '���'

 - ' '

- ' MODIFY PATH GROUP:'

 - ' '

B-6 CA-IDMS Logical Record Facility

- ' SELECTION CRITERIA (TOTAL OF ONE PATH)'

 - ' '

 - ' '

- ' THIS PATH PROCESSES THE TRANSFER OF AN EMPLOYEE'

- ' FROM ONE DEPARTMENT TO ANOTHER. THE PATH'

- ' DOES THE FOLLOWING:'

 - ' '

- ' 1) CHECKS THAT THE OLD DEPARTMENT ID, NEW'

- ' DEPARTMENT ID, AND EMPLOYEE ID ARE VALID'

 - ' '

- ' 2) DISCONNECTS THE EMPLOYEE RECORD FROM'

- ' THE OLD DEPARTMENT'

 - ' '

- ' 3) CONNECTS THE EMPLOYEE RECORD TO THE NEW'

 - ' DEPARTMENT'

 - ' '

- ' THE PATH USES THE FOLLOWING ROLE NAMES:'

 - ' '

- ' OLD-DEPT REPRESENTS THE DEPARTMENT THAT THE'

- ' EMPLOYEE IS CURRENTLY A MEMBER OF'

 - ' '

- ' NEW-DEPT REPRESENTS THE DEPARTMENT THAT THE'

- ' EMPLOYEE WILL TRANSFER TO'

 - ' '

- ' THE PATH WILL BE SELECTED IF A VALUE FOR DEPT-ID-�415'

' OF OLD-DEPT IS PASSED THROUGH PROGRAM VARIABLE STORAGE'

' AND IF THESE COMPARISONS ARE INCLUDED IN THE PROGRAM'

 - ' WHERE CLAUSE:'

 - ' '

- ' EMP-ID-�415 AND DEPT-ID-�415 OF NEW-DEPT ='

 - ' '

 - ' A LITERAL'

- ' A PROGRAM VARIABLE'

- ' A FIELD IN THE LOGICAL-RECORD'

- ' AREA OF PROGRAM VARIABLE STORAGE'

 - ' '

- ' THE PATH CAN RETURN THE FOLLOWING DBA-DEFINED'

 - ' PATH STATUSES:'

 - ' '

- ' INVALID-ID ── THE INPUT EMPLOYEE ID'

 - ' IS INVALID'

- ' INVALID-NEW-DEPT ── THE INPUT NEW DEPARTMENT'

- ' ID IS INVALID'

- ' INVALID-OLD-DEPT ── THE INPUT OLD DEPARMENT'

- ' ID IS INVALID'

- ' NO-DEPT ── THE REQUESTED EMPLOYEE'

- ' IS NOT PART OF THE'

 - ' INDICATED DEPARTMENT'

 - ' '

 - ' '

Appendix B. Sample Subschema EMPLR40 B-7

 .

 ADD

PATH-GROUP NAME IS MODIFY EMP-LR

SELECT FOR KEYWORD MOD-EMP

FIND CURRENT EMPLOYEE

ON ���� NEXT

 MODIFY EMPLOYEE

ON ���� NEXT

 .

 ADD

PATH-GROUP NAME IS OBTAIN EMP-LR

SELECT FOR FIELDNAME-EQ DEPT-ID-�41� OF DEPARTMENT FIELDNAME-EQ

OFFICE-CODE-�45� OF OFFICE

OBTAIN FIRST DEPARTMENT

WHERE CALCKEY EQ DEPT-ID-�41� OF REQUEST

ON ���� NEXT

ON �326 RETURN INVALID-DEPT

OBTAIN FIRST OFFICE

WHERE CALCKEY EQ OFFICE-CODE-�45� OF REQUEST

ON ���� NEXT

ON �326 RETURN INVALID-OFFICE

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

ON ���� NEXT

ON �326 RETURN NO-EMP

 .

 ADD

PATH-GROUP NAME IS STORE EMP-LR

SELECT FOR KEYWORD STORE-EMP

FIND CURRENT DEPARTMENT

ON ���� NEXT

FIND CURRENT OFFICE

ON ���� NEXT

 STORE EMPLOYEE

ON ���� NEXT

 .

 ADD

PATH-GROUP NAME IS MODIFY EMP-TRANS-LR

SELECT FOR FIELDNAME-EQ EMP-ID-�415 OF EMPLOYEE

FIELDNAME-EQ DEPT-ID-�41� OF NEW-DEPT

FIND FIRST NEW-DEPT

WHERE CALCKEY EQ DEPT-ID-�41� OF NEW-DEPT OF REQUEST

ON ���� NEXT

ON �326 RETURN INVALID-NEW-DEPT

OBTAIN FIRST EMPLOYEE

WHERE CALCKEY EQ EMP-ID-�415 OF REQUEST

ON ���� NEXT

ON �326 RETURN INVALID-ID

IF DEPT-EMPLOYEE MEMBER

B-8 CA-IDMS Logical Record Facility

ON ���� NEXT

ON 16�1 RETURN NO-DEPT

OBTAIN OWNER OLD-DEPT WITHIN DEPT-EMPLOYEE

WHERE DEPT-ID-�41� OF OLD-DEPT EQ DEPT-ID-�41� OF OLD-DEPT OF

 LR

ON ���� NEXT

ON �326 RETURN INVALID-OLD-DEPT

DISCONNECT EMPLOYEE FROM DEPT-EMPLOYEE

ON ���� NEXT

OBTAIN FIRST NEW-DEPT

WHERE CALCKEY EQ DEPT-ID-�41� OF NEW-DEPT OF REQUEST

ON ���� NEXT

ON �326 ITERATE

CONNECT EMPLOYEE TO DEPT-EMPLOYEE

ON ���� NEXT

 .

Appendix B. Sample Subschema EMPLR40 B-9

B-10 CA-IDMS Logical Record Facility

Appendix C. Sample Schema EMPSCHM

Appendix C. Sample Schema EMPSCHM C-1

C-2 CA-IDMS Logical Record Facility

Overview: The EMPSCHM schema defines defines the sample employee database.

The data structure diagram for this database is found in Chapter 3, “Preliminary
Analysis and Design” on page 3-1.

Schema listing: Below is the schema compiler listing for this schema.

 ADD

SCHEMA NAME IS EMPSCHM VERSION IS 1

�+ DATE CREATED IS 12/17/9�

�+ TIME CREATED IS 14�65127

�+ DATE LAST UPDATED IS 12/3�/9�

�+ TIME LAST UPDATED IS 14�35955

�+ PREPARED BY TDB

�+ REVISED BY TDB

ASSIGN RECORD IDS FROM 1��1

PUBLIC ACCESS IS ALLOWED FOR ALL

�+ SUBSCHEMA IS EMPLR35

�+ SUBSCHEMA IS EMPLR4�

 .

 ADD

AREA NAME IS EMP-DEMO-REGION

 .

 ADD

AREA NAME IS INS-DEMO-REGION

 .

 ADD

AREA NAME IS ORG-DEMO-REGION

 .

 ADD

RECORD NAME IS COVERAGE

�+ USES STRUCTURE OF RECORD COVERAGE VERSION 1��

RECORD ID IS 4��

LOCATION MODE IS VIA EMP-COVERAGE SET

RECORD SYNONYM NAME FOR ASSEMBLER IS COVERGE

RECORD SYNONYM NAME FOR FORTRAN IS COVRGE

 .

 �2 SELECTION-DATE-�4��

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVSELDT

SYNONYM NAME FOR FORTRAN IS CVSLDT

 .

Appendix C. Sample Schema EMPSCHM C-3

 �3 SELECTION-YEAR-�4��

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVSELYR

SYNONYM NAME FOR FORTRAN IS CVSLYR

 .

 �3 SELECTION-MONTH-�4��

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVSELMO

SYNONYM NAME FOR FORTRAN IS CVSLMO

 .

 �3 SELECTION-DAY-�4��

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVSELDA

SYNONYM NAME FOR FORTRAN IS CVSLDA

 .

 �2 TERMINATION-DATE-�4��

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVTRMDT

SYNONYM NAME FOR FORTRAN IS CVTMDT

 .

 �3 TERMINATION-YEAR-�4��

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVTRMYR

SYNONYM NAME FOR FORTRAN IS CVTMYR

 .

 �3 TERMINATION-MONTH-�4��

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVTRMMO

SYNONYM NAME FOR FORTRAN IS CVTMMO

 .

 �3 TERMINATION-DAY-�4��

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVTRMDA

SYNONYM NAME FOR FORTRAN IS CVTMDA

 .

 �2 TYPE-�4��

 PICTURE IS X

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVTYPE

SYNONYM NAME FOR FORTRAN IS CVTYPE

 .

 88 MASTER-�4��

USAGE IS CONDITION-NAME

VALUE IS 'M'

SYNONYM NAME FOR ASSEMBLER IS COVMASTR

SYNONYM NAME FOR FORTRAN IS CVMSTR

C-4 CA-IDMS Logical Record Facility

 .

 88 FAMILY-�4��

USAGE IS CONDITION-NAME

VALUE IS 'F'

SYNONYM NAME FOR ASSEMBLER IS COVFAMLY

SYNONYM NAME FOR FORTRAN IS CVFMLY

 .

 88 DEPENDENT-�4��

USAGE IS CONDITION-NAME

VALUE IS 'D'

SYNONYM NAME FOR ASSEMBLER IS COVDPNDT

SYNONYM NAME FOR FORTRAN IS CVDPND

 .

 �2 INS-PLAN-CODE-�4��

 PICTURE IS X(3)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS COVPLNCD

SYNONYM NAME FOR FORTRAN IS CVPLCD

 .

 88 GROUP-LIFE-�4��

USAGE IS CONDITION-NAME

VALUE IS '��1'

 .

 88 HMO-�4��

USAGE IS CONDITION-NAME

VALUE IS '��2'

 .

 88 GROUP-HEALTH-�4��

USAGE IS CONDITION-NAME

VALUE IS '��3'

 .

 88 GROUP-DENTAL-�4��

USAGE IS CONDITION-NAME

VALUE IS '��4'

 .

 ADD

RECORD NAME IS DENTAL-CLAIM

�+ USES STRUCTURE OF RECORD DENTAL-CLAIM VERSION 1��

RECORD ID IS 4�5

LOCATION MODE IS VIA COVERAGE-CLAIMS SET

MINIMUM ROOT LENGTH IS 132 CHARACTERS

MINIMUM FRAGMENT LENGTH IS 93� CHARACTERS

RECORD SYNONYM NAME FOR ASSEMBLER IS DENTCLM

RECORD SYNONYM NAME FOR FORTRAN IS DNTCLM

 .

 �2 CLAIM-DATE-�4�5

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCCLMDT

SYNONYM NAME FOR FORTRAN IS DCCLDT

Appendix C. Sample Schema EMPSCHM C-5

 .

 �3 CLAIM-YEAR-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCCLMYR

SYNONYM NAME FOR FORTRAN IS DCCLYR

 .

 �3 CLAIM-MONTH-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCCLMMO

SYNONYM NAME FOR FORTRAN IS DCCLMO

 .

 �3 CLAIM-DAY-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCCLMDA

SYNONYM NAME FOR FORTRAN IS DCCLDA

 .

 �2 PATIENT-NAME-�4�5

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPNAME

SYNONYM NAME FOR FORTRAN IS DCPNAM

 .

 �3 PATIENT-FIRST-NAME-�4�5

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPFNAME

SYNONYM NAME FOR FORTRAN IS DCPFNM

 .

 �3 PATIENT-LAST-NAME-�4�5

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPLNAME

SYNONYM NAME FOR FORTRAN IS DCPLNM

 .

 �2 PATIENT-BIRTH-DATE-�4�5

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPBIRDT

SYNONYM NAME FOR FORTRAN IS DCPBDT

 .

 �3 PATIENT-BIRTH-YEAR-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPBIRYR

SYNONYM NAME FOR FORTRAN IS DCPBYR

 .

 �3 PATIENT-BIRTH-MONTH-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPBIRMO

SYNONYM NAME FOR FORTRAN IS DCPBMO

C-6 CA-IDMS Logical Record Facility

 .

 �3 PATIENT-BIRTH-DAY-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPBIRDA

SYNONYM NAME FOR FORTRAN IS DCPBDA

 .

 �2 PATIENT-SEX-�4�5

 PICTURE IS X

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPSEX

SYNONYM NAME FOR FORTRAN IS DCPSEX

 .

 �2 RELATION-TO-EMPLOYEE-�4�5

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCRELEMP

SYNONYM NAME FOR FORTRAN IS DCRLEMP

 .

 �2 DENTIST-NAME-�4�5

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNNAME

SYNONYM NAME FOR FORTRAN IS DCDNNM

 .

 �3 DENTIST-FIRST-NAME-�4�5

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNFNAM

SYNONYM NAME FOR FORTRAN IS DCDNFN

Appendix C. Sample Schema EMPSCHM C-7

 .

 �3 DENTIST-LAST-NAME-�4�5

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNLNAM

SYNONYM NAME FOR FORTRAN IS DCDNLN

 .

 �2 DENTIST-ADDRESS-�4�5

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNADDR

SYNONYM NAME FOR FORTRAN IS DCDNAD

 .

 �3 DENTIST-STREET-�4�5

 PICTURE IS X(2�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNSTR

SYNONYM NAME FOR FORTRAN IS DCDNST

 .

 �3 DENTIST-CITY-�4�5

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNCITY

SYNONYM NAME FOR FORTRAN IS DCDNCY

 .

 �3 DENTIST-STATE-�4�5

 PICTURE IS X(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNSTAT

SYNONYM NAME FOR FORTRAN IS DCDNS

 .

 �3 DENTIST-ZIP-�4�5

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNZIP

SYNONYM NAME FOR FORTRAN IS DCDNZP

 .

 �4 DENTIST-ZIP-FIRST-FIVE-�4�5

 PICTURE IS X(5)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNZPF5

SYNONYM NAME FOR FORTRAN IS DCDNZ5

 .

 �4 DENTIST-ZIP-LAST-FOUR-�4�5

 PICTURE IS X(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNZPL4

SYNONYM NAME FOR FORTRAN IS DCDNZ4

C-8 CA-IDMS Logical Record Facility

 .

 �2 DENTIST-LICENSE-NUMBER-�4�5

 PICTURE IS 9(6)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDNLICN

SYNONYM NAME FOR FORTRAN IS DCLICN

 .

 �2 NUMBER-OF-PROCEDURES-�4�5

 PICTURE IS 9(2)

USAGE IS COMP

SYNONYM NAME FOR ASSEMBLER IS DCNOPROC

SYNONYM NAME FOR FORTRAN IS DCNOPR

 .

 �2 FILLER

 PICTURE IS XXX

USAGE IS DISPLAY

 .

 �2 DENTIST-CHARGES-�4�5

USAGE IS DISPLAY

OCCURS � TO 1� TIMES DEPENDING ON NUMBER-OF-PROCEDURES-�4�5

SYNONYM NAME FOR ASSEMBLER IS DCDNCHGS

SYNONYM NAME FOR FORTRAN IS DCDNCH

 .

 �3 TOOTH-NUMBER-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCTOTHNO

SYNONYM NAME FOR FORTRAN IS DCTTHN

 .

 �3 SERVICE-DATE-�4�5

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCSERVDT

SYNONYM NAME FOR FORTRAN IS DCSVDT

 .

 �4 SERVICE-YEAR-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCSERVYR

SYNONYM NAME FOR FORTRAN IS DCSVYR

 .

 �4 SERVICE-MONTH-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCSERVMO

SYNONYM NAME FOR FORTRAN IS DCSVMO

 .

 �4 SERVICE-DAY-�4�5

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCSERVDA

SYNONYM NAME FOR FORTRAN IS DCSVDA

Appendix C. Sample Schema EMPSCHM C-9

 .

 �3 PROCEDURE-CODE-�4�5

 PICTURE IS 9(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCPROCCD

SYNONYM NAME FOR FORTRAN IS DCPRCD

 .

 �3 DESCRIPTION-OF-SERVICE-�4�5

 PICTURE IS X(6�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DCDESCSV

SYNONYM NAME FOR FORTRAN IS DCDSCS

 .

 �3 FEE-�4�5

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS DCFEE

SYNONYM NAME FOR FORTRAN IS DCFEE

 .

 �3 FILLER

 PICTURE IS XXX

USAGE IS DISPLAY

 .

 ADD

RECORD NAME IS DEPARTMENT

�+ USES STRUCTURE OF RECORD DEPARTMENT VERSION 1��

RECORD ID IS 41�

LOCATION MODE IS CALC USING (DEPT-ID-�41�) DUPLICATES ARE

 NOT ALLOWED

RECORD SYNONYM NAME FOR ASSEMBLER IS DEPARTMT

RECORD SYNONYM NAME FOR FORTRAN IS DEPT

 .

 �2 DEPT-ID-�41�

 PICTURE IS 9(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DEPTID

SYNONYM NAME FOR FORTRAN IS DPID

 .

 �2 DEPT-NAME-�41�

 PICTURE IS X(45)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DEPTNAME

SYNONYM NAME FOR FORTRAN IS DPNAME

 .

 �2 DEPT-HEAD-ID-�41�

 PICTURE IS 9(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS DEPTHDID

SYNONYM NAME FOR FORTRAN IS DPHDID

 .

 �2 FILLER

 PICTURE IS XXX

USAGE IS DISPLAY

C-10 CA-IDMS Logical Record Facility

 .

 ADD

RECORD NAME IS EMPLOYEE

�+ USES STRUCTURE OF RECORD EMPLOYEE VERSION 1��

RECORD ID IS 415

LOCATION MODE IS CALC USING (EMP-ID-�415) DUPLICATES ARE

 NOT ALLOWED

RECORD SYNONYM NAME FOR ASSEMBLER IS EMPLOYE

RECORD SYNONYM NAME FOR FORTRAN IS EMPLOY

 .

 �2 EMP-ID-�415

 PICTURE IS 9(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPID

SYNONYM NAME FOR FORTRAN IS EMPID

 .

 �2 EMP-NAME-�415

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPNAME

SYNONYM NAME FOR FORTRAN IS EMPNAM

 .

 �3 EMP-FIRST-NAME-�415

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPFNAME

SYNONYM NAME FOR FORTRAN IS EMPFNM

 .

 �3 EMP-LAST-NAME-�415

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPLNAME

SYNONYM NAME FOR FORTRAN IS EMPLNM

 .

 �2 EMP-ADDRESS-�415

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPADDR

SYNONYM NAME FOR FORTRAN IS EMPADR

 .

 �3 EMP-STREET-�415

 PICTURE IS X(2�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPSTRET

SYNONYM NAME FOR FORTRAN IS EMPST

 .

 �3 EMP-CITY-�415

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPCITY

SYNONYM NAME FOR FORTRAN IS EMPCTY

Appendix C. Sample Schema EMPSCHM C-11

 .

 �3 EMP-STATE-�415

 PICTURE IS X(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPSTATE

SYNONYM NAME FOR FORTRAN IS EMPSTE

 .

 �3 EMP-ZIP-�415

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPZIP

SYNONYM NAME FOR FORTRAN IS EMPZIP

 .

 �4 EMP-ZIP-FIRST-FIVE-�415

 PICTURE IS X(5)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPZIPF5

SYNONYM NAME FOR FORTRAN IS EMPZF5

 .

 �4 EMP-ZIP-LAST-FOUR-�415

 PICTURE IS X(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPZIPL4

SYNONYM NAME FOR FORTRAN IS EMPZL4

 .

 �2 EMP-PHONE-�415

 PICTURE IS 9(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPPHONE

SYNONYM NAME FOR FORTRAN IS EMPPHN

 .

 �2 STATUS-�415

 PICTURE IS X(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPSTATU

SYNONYM NAME FOR FORTRAN IS EMPSTA

 .

 88 ACTIVE-�415

USAGE IS CONDITION-NAME

VALUE IS '�1'

 .

 88 ST-DISABIL-�415

USAGE IS CONDITION-NAME

VALUE IS '�2'

SYNONYM NAME FOR ASSEMBLER IS STDSBL

SYNONYM NAME FOR FORTRAN IS STDSBL

 .

 88 LT-DISABIL-�415

USAGE IS CONDITION-NAME

VALUE IS '�3'

SYNONYM NAME FOR ASSEMBLER IS LTDSBL

SYNONYM NAME FOR FORTRAN IS LTDSBL

C-12 CA-IDMS Logical Record Facility

 .

 88 LEAVE-OF-ABSENCE-�415

USAGE IS CONDITION-NAME

VALUE IS '�4'

SYNONYM NAME FOR ASSEMBLER IS LVOFAB

SYNONYM NAME FOR FORTRAN IS LVOFAB

 .

 88 TERMINATED-�415

USAGE IS CONDITION-NAME

VALUE IS '�5'

SYNONYM NAME FOR ASSEMBLER IS TRMINATD

SYNONYM NAME FOR FORTRAN IS TRMNTD

 .

 �2 SS-NUMBER-�415

 PICTURE IS 9(9)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPSSNUM

SYNONYM NAME FOR FORTRAN IS EMPSS

 .

 �2 START-DATE-�415

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPSTDT

SYNONYM NAME FOR FORTRAN IS EMPSDT

 .

 �3 START-YEAR-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPSTYR

SYNONYM NAME FOR FORTRAN IS EMPSYR

 .

 �3 START-MONTH-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPSTMO

SYNONYM NAME FOR FORTRAN IS EMPSMO

 .

 �3 START-DAY-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPSTDA

SYNONYM NAME FOR FORTRAN IS EMPSDA

 .

 �2 TERMINATION-DATE-�415

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPTRMDT

SYNONYM NAME FOR FORTRAN IS EMPTDT

 .

 �3 TERMINATION-YEAR-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPTRMYR

SYNONYM NAME FOR FORTRAN IS EMPTYR

Appendix C. Sample Schema EMPSCHM C-13

 .

 �3 TERMINATION-MONTH-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPTRMMO

SYNONYM NAME FOR FORTRAN IS EMPTMO

 .

 �3 TERMINATION-DAY-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPTRMDA

SYNONYM NAME FOR FORTRAN IS EMPTDA

 .

 �2 BIRTH-DATE-�415

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPBIRDT

SYNONYM NAME FOR FORTRAN IS EMPBDT

 .

 �3 BIRTH-YEAR-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPBIRYR

SYNONYM NAME FOR FORTRAN IS EMPBYR

 .

 �3 BIRTH-MONTH-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPBIRMO

SYNONYM NAME FOR FORTRAN IS EMPBMO

 .

 �3 BIRTH-DAY-�415

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EMPBIRDA

SYNONYM NAME FOR FORTRAN IS EMPBDA

 .

 �2 FILLER

 PICTURE IS XX

USAGE IS DISPLAY

 .

 ADD

RECORD NAME IS EMPOSITION

�+ USES STRUCTURE OF RECORD EMPOSITION VERSION 1��

RECORD ID IS 42�

LOCATION MODE IS VIA EMP-EMPOSITION SET

RECORD SYNONYM NAME FOR ASSEMBLER IS EMPOSITN

RECORD SYNONYM NAME FOR FORTRAN IS EMPOST

 .

 �2 START-DATE-�42�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPSTRTDT

SYNONYM NAME FOR FORTRAN IS EPSTDT

C-14 CA-IDMS Logical Record Facility

 .

 �3 START-YEAR-�42�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPSTRTYR

SYNONYM NAME FOR FORTRAN IS EPSTYR

 .

 �3 START-MONTH-�42�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPSTRTMO

SYNONYM NAME FOR FORTRAN IS EPSTMO

 .

 �3 START-DAY-�42�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPSTRTDA

SYNONYM NAME FOR FORTRAN IS EPSTDA

 .

 �2 FINISH-DATE-�42�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPFINIDT

SYNONYM NAME FOR FORTRAN IS EPFNDT

 .

 �3 FINISH-YEAR-�42�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPFINIYR

SYNONYM NAME FOR FORTRAN IS EPFNYR

 .

 �3 FINISH-MONTH-�42�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPFINIMO

SYNONYM NAME FOR FORTRAN IS EPFNMO

 .

 �3 FINISH-DAY-�42�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPFINIDA

SYNONYM NAME FOR FORTRAN IS EPFNDA

 .

 �2 SALARY-GRADE-�42�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EPSALGRD

SYNONYM NAME FOR FORTRAN IS EPSLGD

Appendix C. Sample Schema EMPSCHM C-15

 .

 �2 SALARY-AMOUNT-�42�

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS EPSALAMT

SYNONYM NAME FOR FORTRAN IS EPSLAM

 .

 �2 BONUS-PERCENT-�42�

 PICTURE IS SV999

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS EPBONPCT

SYNONYM NAME FOR FORTRAN IS EPBPCT

 .

 �2 COMMISSION-PERCENT-�42�

 PICTURE IS SV999

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS EPCMMPCT

SYNONYM NAME FOR FORTRAN IS EPCPCT

 .

 �2 OVERTIME-RATE-�42�

 PICTURE IS S9V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS EPOTRATE

SYNONYM NAME FOR FORTRAN IS EPOTRT

 .

 �2 FILLER

 PICTURE IS XXX

USAGE IS DISPLAY

 .

 ADD

RECORD NAME IS EXPERTISE

�+ USES STRUCTURE OF RECORD EXPERTISE VERSION 1��

RECORD ID IS 425

LOCATION MODE IS VIA EMP-EXPERTISE SET

RECORD SYNONYM NAME FOR ASSEMBLER IS EXPRTISE

RECORD SYNONYM NAME FOR FORTRAN IS EXPRTS

 .

 �2 SKILL-LEVEL-�425

 PICTURE IS XX

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EXPSKLVL

SYNONYM NAME FOR FORTRAN IS EXPSKL

 .

 88 EXPERT-�425

USAGE IS CONDITION-NAME

VALUE IS '�4'

C-16 CA-IDMS Logical Record Facility

 .

 88 PROFICIENT-�425

USAGE IS CONDITION-NAME

VALUE IS '�3'

SYNONYM NAME FOR ASSEMBLER IS PROFICNT

SYNONYM NAME FOR FORTRAN IS PRFCNT

 .

 88 COMPETENT-�425

USAGE IS CONDITION-NAME

VALUE IS '�2'

SYNONYM NAME FOR ASSEMBLER IS COMPETNT

SYNONYM NAME FOR FORTRAN IS CMPTNT

 .

 88 ELEMENTARY-�425

USAGE IS CONDITION-NAME

VALUE IS '�1'

SYNONYM NAME FOR ASSEMBLER IS ELEMNTRY

SYNONYM NAME FOR FORTRAN IS ELMNTY

 .

 �2 EXPERTISE-DATE-�425

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EXPDATE

SYNONYM NAME FOR FORTRAN IS EXPDTE

 .

 �3 EXPERTISE-YEAR-�425

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EXPYEAR

SYNONYM NAME FOR FORTRAN IS EXPYR

 .

 �3 EXPERTISE-MONTH-�425

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EXPMONTH

SYNONYM NAME FOR FORTRAN IS EXPMO

 .

 �3 EXPERTISE-DAY-�425

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS EXPDAY

SYNONYM NAME FOR FORTRAN IS EXPDAY

 .

 ADD

RECORD NAME IS HOSPITAL-CLAIM

�+ USES STRUCTURE OF RECORD HOSPITAL-CLAIM VERSION 1��

RECORD ID IS 43�

LOCATION MODE IS VIA COVERAGE-CLAIMS SET

RECORD SYNONYM NAME FOR ASSEMBLER IS HOSPCLM

RECORD SYNONYM NAME FOR FORTRAN IS HSPCLM

Appendix C. Sample Schema EMPSCHM C-17

 .

 �2 CLAIM-DATE-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCCLMDT

SYNONYM NAME FOR FORTRAN IS HCCLDT

 .

 �3 CLAIM-YEAR-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCCLMYR

SYNONYM NAME FOR FORTRAN IS HCCLYR

 .

 �3 CLAIM-MONTH-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCCLMMO

SYNONYM NAME FOR FORTRAN IS HCCLMO

 .

 �3 CLAIM-DAY-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCCLMDAY

SYNONYM NAME FOR FORTRAN IS HCCLDA

 .

 �2 PATIENT-NAME-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCPTNAME

SYNONYM NAME FOR FORTRAN IS HCPTNM

 .

 �3 PATIENT-FIRST-NAME-�43�

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCPTFNAM

SYNONYM NAME FOR FORTRAN IS HCPTFN

 .

 �3 PATIENT-LAST-NAME-�43�

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCPTLNAM

SYNONYM NAME FOR FORTRAN IS HCPTLN

 .

 �2 PATIENT-BIRTH-DATE-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCPTBDAT

SYNONYM NAME FOR FORTRAN IS HCPBDT

C-18 CA-IDMS Logical Record Facility

 .

 �3 PATIENT-BIRTH-YEAR-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCPTBYR

SYNONYM NAME FOR FORTRAN IS HCPBYR

 .

 �3 PATIENT-BIRTH-MONTH-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCPTBMO

SYNONYM NAME FOR FORTRAN IS HCPBMO

 .

 �3 PATIENT-BIRTH-DAY-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCPTBDA

SYNONYM NAME FOR FORTRAN IS HCPBDA

 .

 �2 PATIENT-SEX-�43�

 PICTURE IS X

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCPTSEX

SYNONYM NAME FOR FORTRAN IS HCPTSEX

 .

 �2 RELATION-TO-EMPLOYEE-�43�

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCRELEMP

SYNONYM NAME FOR FORTRAN IS HCREMP

 .

 �2 HOSPITAL-NAME-�43�

 PICTURE IS X(25)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPNAM

SYNONYM NAME FOR FORTRAN IS HCHNAM

 .

 �2 HOSP-ADDRESS-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPADD

SYNONYM NAME FOR FORTRAN IS HCHADD

Appendix C. Sample Schema EMPSCHM C-19

 .

 �3 HOSP-STREET-�43�

 PICTURE IS X(2�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPSTR

SYNONYM NAME FOR FORTRAN IS HCHSTR

 .

 �3 HOSP-CITY-�43�

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPCTY

SYNONYM NAME FOR FORTRAN IS HCHCTY

 .

 �3 HOSP-STATE-�43�

 PICTURE IS X(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPSTA

SYNONYM NAME FOR FORTRAN IS HCHSTA

 .

 �3 HOSP-ZIP-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPZIP

SYNONYM NAME FOR FORTRAN IS HCHZIP

 .

 �4 HOSP-ZIP-FIRST-FIVE-�43�

 PICTURE IS X(5)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPZF5

SYNONYM NAME FOR FORTRAN IS HCHZF5

 .

 �4 HOSP-ZIP-LAST-FOUR-�43�

 PICTURE IS X(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPZL4

SYNONYM NAME FOR FORTRAN IS HCHZL4

 .

 �2 ADMIT-DATE-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCADMTDT

SYNONYM NAME FOR FORTRAN IS HCADDT

 .

 �3 ADMIT-YEAR-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCADMTYR

SYNONYM NAME FOR FORTRAN IS HCADYR

C-20 CA-IDMS Logical Record Facility

 .

 �3 ADMIT-MONTH-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCADMTMO

SYNONYM NAME FOR FORTRAN IS HCADMO

 .

 �3 ADMIT-DAY-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCADMTDA

SYNONYM NAME FOR FORTRAN IS HCADDA

 .

 �2 DISCHARGE-DATE-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCDSCGDT

SYNONYM NAME FOR FORTRAN IS HCDSDT

 .

 �3 DISCHARGE-YEAR-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCDSCGYR

SYNONYM NAME FOR FORTRAN IS HCDSYR

 .

 �3 DISCHARGE-MONTH-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCDSCGMO

SYNONYM NAME FOR FORTRAN IS HCDSMO

 .

 �3 DISCHARGE-DAY-�43�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCDSCGDA

SYNONYM NAME FOR FORTRAN IS HCDSDA

 .

 �2 DIAGNOSIS-�43�

 PICTURE IS X(6�)

USAGE IS DISPLAY

OCCURS 2 TIMES

SYNONYM NAME FOR ASSEMBLER IS HCDIAGN

SYNONYM NAME FOR FORTRAN IS HCDIAG

 .

 �2 HOSPITAL-CHARGES-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCHSPCHG

SYNONYM NAME FOR FORTRAN IS HCHCHG

Appendix C. Sample Schema EMPSCHM C-21

 .

 �3 ROOM-AND-BOARD-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCRMBRD

SYNONYM NAME FOR FORTRAN IS HCRMBD

 .

 �4 WARD-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCWARD

SYNONYM NAME FOR FORTRAN IS HCWARD

 .

 �5 WARD-DAYS-�43�

 PICTURE IS S9(5)

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCWDDAYS

SYNONYM NAME FOR FORTRAN IS HCWDYS

 .

 �5 WARD-RATE-�43�

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCWDRATE

SYNONYM NAME FOR FORTRAN IS HCWRTE

 .

 �5 WARD-TOTAL-�43�

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCWDTOTL

SYNONYM NAME FOR FORTRAN IS HCWTOT

 .

 �4 SEMI-PRIVATE-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCSPRIV

SYNONYM NAME FOR FORTRAN IS HCSPRV

 .

 �5 SEMI-DAYS-�43�

 PICTURE IS S9(5)

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCSDAYS

SYNONYM NAME FOR FORTRAN IS HCSDYS

 .

 �5 SEMI-RATE-�43�

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCSRATE

SYNONYM NAME FOR FORTRAN IS HCSRTE

C-22 CA-IDMS Logical Record Facility

 .

 �5 SEMI-TOTAL-�43�

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCSTOTAL

SYNONYM NAME FOR FORTRAN IS HCSTOT

 .

 �3 OTHER-CHARGES-�43�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS HCOTHCHG

SYNONYM NAME FOR FORTRAN IS HCOCHG

 .

 �4 DELIVERY-COST-�43�

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCDELVCH

SYNONYM NAME FOR FORTRAN IS HCDLVC

 .

 �4 ANESTHESIA-COST-�43�

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCANSTHC

SYNONYM NAME FOR FORTRAN IS HCANSC

 .

 �4 LAB-COST-�43�

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS HCLABCST

SYNONYM NAME FOR FORTRAN IS HCLABC

 .

 ADD

RECORD NAME IS INSURANCE-PLAN

�+ USES STRUCTURE OF RECORD INSURANCE-PLAN VERSION 1��

RECORD ID IS 435

LOCATION MODE IS CALC USING (INS-PLAN-CODE-�435)

DUPLICATES ARE NOT ALLOWED

RECORD SYNONYM NAME FOR ASSEMBLER IS INSPLAN

RECORD SYNONYM NAME FOR FORTRAN IS INSPLN

 .

 �2 INS-PLAN-CODE-�435

 PICTURE IS X(3)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCODE

SYNONYM NAME FOR FORTRAN IS IPCODE

Appendix C. Sample Schema EMPSCHM C-23

 .

 88 GROUP-LIFE-�435

USAGE IS CONDITION-NAME

VALUE IS '��1'

SYNONYM NAME FOR ASSEMBLER IS GROUPLIF

SYNONYM NAME FOR FORTRAN IS GRPLIF

 .

 88 HMO-�435

USAGE IS CONDITION-NAME

VALUE IS '��2'

 .

 88 GROUP-HEALTH-�435

USAGE IS CONDITION-NAME

VALUE IS '��3'

SYNONYM NAME FOR ASSEMBLER IS GRPHLTH

SYNONYM NAME FOR FORTRAN IS GRPHTH

 .

 88 GROUP-DENTAL-�435

USAGE IS CONDITION-NAME

VALUE IS '��4'

SYNONYM NAME FOR ASSEMBLER IS GROUPDNT

SYNONYM NAME FOR FORTRAN IS GRPDNT

 .

 �2 INS-CO-NAME-�435

 PICTURE IS X(45)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCNAME

SYNONYM NAME FOR FORTRAN IS IPCNAM

 .

 �2 INS-CO-ADDRESS-�435

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCADDR

SYNONYM NAME FOR FORTRAN IS IPCADR

 .

 �3 INS-CO-STREET-�435

 PICTURE IS X(2�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCSTRT

SYNONYM NAME FOR FORTRAN IS IPCSTR

 .

 �3 INS-CO-CITY-�435

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCCITY

SYNONYM NAME FOR FORTRAN IS IPCCTY

C-24 CA-IDMS Logical Record Facility

 .

 �3 INS-CO-STATE-�435

 PICTURE IS X(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCSTAT

SYNONYM NAME FOR FORTRAN IS IPCSTA

 .

 �3 INS-CO-ZIP-�435

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCZIP

SYNONYM NAME FOR FORTRAN IS IPCZIP

 .

 �4 INS-CO-ZIP-FIRST-FIVE-�435

 PICTURE IS X(5)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCZPF5

SYNONYM NAME FOR FORTRAN IS IPCZF5

 .

 �4 INS-CO-ZIP-LAST-FOUR-�435

 PICTURE IS X(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCZPL4

SYNONYM NAME FOR FORTRAN IS IPCZL4

 .

 �2 INS-CO-PHONE-�435

 PICTURE IS 9(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPCPHON

SYNONYM NAME FOR FORTRAN IS IPCPHN

 .

 �2 GROUP-NUMBER-�435

 PICTURE IS 9(6)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPGRPNO

SYNONYM NAME FOR FORTRAN IS IPGRPN

 .

 �2 PLAN-DESCRIPTION-�435

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS INPDESCR

SYNONYM NAME FOR FORTRAN IS IPDESC

 .

 �3 DEDUCT-�435

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS INPDEDCT

SYNONYM NAME FOR FORTRAN IS IPDDCT

Appendix C. Sample Schema EMPSCHM C-25

 .

 �3 MAXIMUM-LIFE-COST-�435

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS INPMXLIF

SYNONYM NAME FOR FORTRAN IS IPMXLF

 .

 �3 FAMILY-COST-�435

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS INPFAMCS

SYNONYM NAME FOR FORTRAN IS IPFMCS

 .

 �3 DEP-COST-�435

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS INPDEPCS

SYNONYM NAME FOR FORTRAN IS IPDPCS

 .

 �2 FILLER

 PICTURE IS XX

USAGE IS DISPLAY

 .

 ADD

RECORD NAME IS JOB

�+ USES STRUCTURE OF RECORD JOB VERSION 1��

RECORD ID IS 44�

LOCATION MODE IS CALC USING (JOB-ID-�44�) DUPLICATES ARE

 NOT ALLOWED

MINIMUM ROOT LENGTH IS 24 CHARACTERS

MINIMUM FRAGMENT LENGTH IS 296 CHARACTERS

CALL IDMSCOMP BEFORE STORE

CALL IDMSCOMP BEFORE MODIFY

CALL IDMSDCOM AFTER GET

RECORD SYNONYM NAME FOR ASSEMBLER IS JOBA

RECORD SYNONYM NAME FOR FORTRAN IS JOBF

 .

 �2 JOB-ID-�44�

 PICTURE IS 9(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS JOBID

SYNONYM NAME FOR FORTRAN IS JOBID

C-26 CA-IDMS Logical Record Facility

 .

 �2 TITLE-�44�

 PICTURE IS X(2�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS JOBTITLE

SYNONYM NAME FOR FORTRAN IS JTITLE

 .

 �2 DESCRIPTION-�44�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS JOBDESCR

SYNONYM NAME FOR FORTRAN IS JDESCR

 .

 �3 DESCRIPTION-LINE-�44�

 PICTURE IS X(6�)

USAGE IS DISPLAY

OCCURS 2 TIMES

SYNONYM NAME FOR ASSEMBLER IS JOBDSCLN

SYNONYM NAME FOR FORTRAN IS JDSCLN

 .

 �2 REQUIREMENTS-�44�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS JOBRQMNT

SYNONYM NAME FOR FORTRAN IS JRQMNT

 .

 �3 REQUIREMENT-LINE-�44�

 PICTURE IS X(6�)

USAGE IS DISPLAY

OCCURS 2 TIMES

SYNONYM NAME FOR ASSEMBLER IS JOBREQLN

SYNONYM NAME FOR FORTRAN IS JREQLN

 .

 �2 MINIMUM-SALARY-�44�

 PICTURE IS S9(6)V99

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS JOBMNSAL

SYNONYM NAME FOR FORTRAN IS JMNSAL

 .

 �2 MAXIMUM-SALARY-�44�

 PICTURE IS S9(6)V99

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS JOBMXSAL

SYNONYM NAME FOR FORTRAN IS JMXSAL

 .

 �2 SALARY-GRADES-�44�

 PICTURE IS 9(2)

USAGE IS DISPLAY

OCCURS 4 TIMES

SYNONYM NAME FOR ASSEMBLER IS JOBSALGR

SYNONYM NAME FOR FORTRAN IS JSALGR

Appendix C. Sample Schema EMPSCHM C-27

 .

 �2 NUMBER-OF-POSITIONS-�44�

 PICTURE IS 9(3)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS JOBNMPOS

SYNONYM NAME FOR FORTRAN IS JNMPOS

 .

 �2 NUMBER-OPEN-�44�

 PICTURE IS 9(3)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS JOBNMOPN

SYNONYM NAME FOR FORTRAN IS JNMOPN

 .

 �2 FILLER

 PICTURE IS XX

USAGE IS DISPLAY

 .

 ADD

RECORD NAME IS NON-HOSP-CLAIM

�+ USES STRUCTURE OF RECORD NON-HOSP-CLAIM VERSION 1��

RECORD ID IS 445

LOCATION MODE IS VIA COVERAGE-CLAIMS SET

MINIMUM ROOT LENGTH IS 248 CHARACTERS

MINIMUM FRAGMENT LENGTH IS 1��8 CHARACTERS

RECORD SYNONYM NAME FOR ASSEMBLER IS NONHSPCL

RECORD SYNONYM NAME FOR FORTRAN IS NHSPCL

 .

 �2 CLAIM-DATE-�445

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHCLMDT

SYNONYM NAME FOR FORTRAN IS NHCLDT

 .

 �3 CLAIM-YEAR-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHCLMYR

SYNONYM NAME FOR FORTRAN IS NHCLYR

 .

 �3 CLAIM-MONTH-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHCLMMO

SYNONYM NAME FOR FORTRAN IS NHCLMO

C-28 CA-IDMS Logical Record Facility

 .

 �3 CLAIM-DAY-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHCLMDAY

SYNONYM NAME FOR FORTRAN IS NHCLDA

 .

 �2 PATIENT-NAME-�445

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPTNAME

SYNONYM NAME FOR FORTRAN IS NHPTNM

 .

 �3 PATIENT-FIRST-NAME-�445

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPTFNAM

SYNONYM NAME FOR FORTRAN IS NHPTFN

 .

 �3 PATIENT-LAST-NAME-�445

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPTLNAM

SYNONYM NAME FOR FORTRAN IS NHPTLN

 .

 �2 PATIENT-BIRTH-DATE-�445

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPTBDAT

SYNONYM NAME FOR FORTRAN IS NHPBDT

 .

 �3 PATIENT-BIRTH-YEAR-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPTBYR

SYNONYM NAME FOR FORTRAN IS NHPBYR

 .

 �3 PATIENT-BIRTH-MONTH-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPTBMO

SYNONYM NAME FOR FORTRAN IS NHPBMO

 .

 �3 PATIENT-BIRTH-DAY-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPTBDA

SYNONYM NAME FOR FORTRAN IS NHPBDA

Appendix C. Sample Schema EMPSCHM C-29

 .

 �2 PATIENT-SEX-�445

 PICTURE IS X

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPTSEX

SYNONYM NAME FOR FORTRAN IS NHPSEX

 .

 �2 RELATION-TO-EMPLOYEE-�445

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHRELEMP

SYNONYM NAME FOR FORTRAN IS NHREMP

 .

 �2 PHYSICIAN-NAME-�445

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYNAM

SYNONYM NAME FOR FORTRAN IS NHPHNM

 .

 �3 PHYSICIAN-FIRST-NAME-�445

 PICTURE IS X(1�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYFNM

SYNONYM NAME FOR FORTRAN IS NHPHFN

 .

 �3 PHYSICIAN-LAST-NAME-�445

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYLNM

SYNONYM NAME FOR FORTRAN IS NHPHLN

 .

 �2 PHYSICIAN-ADDRESS-�445

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYADD

SYNONYM NAME FOR FORTRAN IS NHPHAD

 .

 �3 PHYSICIAN-STREET-�445

 PICTURE IS X(2�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYSTR

SYNONYM NAME FOR FORTRAN IS NHPHST

 .

 �3 PHYSICIAN-CITY-�445

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYCTY

SYNONYM NAME FOR FORTRAN IS NHPHCY

C-30 CA-IDMS Logical Record Facility

 .

 �3 PHYSICIAN-STATE-�445

 PICTURE IS X(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYSTA

SYNONYM NAME FOR FORTRAN IS NHPHSA

 .

 �3 PHYSICIAN-ZIP-�445

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYZIP

SYNONYM NAME FOR FORTRAN IS NHPHZP

 .

 �4 PHYSICIAN-ZIP-FIRST-FIVE-�445

 PICTURE IS X(5)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYZ5

SYNONYM NAME FOR FORTRAN IS NHPHZ5

 .

 �4 PHYSICIAN-ZIP-LAST-FOUR-�445

 PICTURE IS X(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYZ4

SYNONYM NAME FOR FORTRAN IS NHPHZ4

 .

 �2 PHYSICIAN-ID-�445

 PICTURE IS 9(6)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPHYSID

SYNONYM NAME FOR FORTRAN IS NHPHID

 .

 �2 DIAGNOSIS-�445

 PICTURE IS X(6�)

USAGE IS DISPLAY

OCCURS 2 TIMES

SYNONYM NAME FOR ASSEMBLER IS NHDIAGN

SYNONYM NAME FOR FORTRAN IS NHDIAG

 .

 �2 NUMBER-OF-PROCEDURES-�445

 PICTURE IS 9(2)

USAGE IS COMP

SYNONYM NAME FOR ASSEMBLER IS NHNOPROC

SYNONYM NAME FOR FORTRAN IS NHNPRC

Appendix C. Sample Schema EMPSCHM C-31

 .

 �2 FILLER

 PICTURE IS X

USAGE IS DISPLAY

 .

 �2 PHYSICIAN-CHARGES-�445

USAGE IS DISPLAY

OCCURS � TO 1� TIMES DEPENDING ON NUMBER-OF-PROCEDURES-�445

SYNONYM NAME FOR ASSEMBLER IS NHPHYCHG

SYNONYM NAME FOR FORTRAN IS NHPHCH

 .

 �3 SERVICE-DATE-�445

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHSERVDT

SYNONYM NAME FOR FORTRAN IS NHSVDT

 .

 �4 SERVICE-YEAR-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHSERVYR

SYNONYM NAME FOR FORTRAN IS NHSVYR

 .

 �4 SERVICE-MONTH-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHSERVMO

SYNONYM NAME FOR FORTRAN IS NHSVMO

 .

 �4 SERVICE-DAY-�445

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHSERVDA

SYNONYM NAME FOR FORTRAN IS NHSVDA

 .

 �3 PROCEDURE-CODE-�445

 PICTURE IS 9(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHPROCCD

SYNONYM NAME FOR FORTRAN IS NHPRCD

 .

 �3 DESCRIPTION-OF-SERVICE-�445

 PICTURE IS X(6�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS NHDESCSV

SYNONYM NAME FOR FORTRAN IS NHDSCS

C-32 CA-IDMS Logical Record Facility

 .

 �3 FEE-�445

 PICTURE IS S9(7)V99

USAGE IS COMP-3

SYNONYM NAME FOR ASSEMBLER IS NHFEE

SYNONYM NAME FOR FORTRAN IS NHFEE

 .

 �3 FILLER

 PICTURE IS X

USAGE IS DISPLAY

 .

 ADD

RECORD NAME IS OFFICE

�+ USES STRUCTURE OF RECORD OFFICE VERSION 1��

RECORD ID IS 45�

LOCATION MODE IS CALC USING (OFFICE-CODE-�45�)

DUPLICATES ARE NOT ALLOWED

RECORD SYNONYM NAME FOR ASSEMBLER IS OFFIC

RECORD SYNONYM NAME FOR FORTRAN IS OFFCE

 .

 �2 OFFICE-CODE-�45�

 PICTURE IS X(3)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFCODE

SYNONYM NAME FOR FORTRAN IS OFCODE

 .

 �2 OFFICE-ADDRESS-�45�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFADDR

SYNONYM NAME FOR FORTRAN IS OFADDR

 .

 �3 OFFICE-STREET-�45�

 PICTURE IS X(2�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFSTRT

SYNONYM NAME FOR FORTRAN IS OFSTRT

 .

 �3 OFFICE-CITY-�45�

 PICTURE IS X(15)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFCITY

SYNONYM NAME FOR FORTRAN IS OFCITY

 .

 �3 OFFICE-STATE-�45�

 PICTURE IS X(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFSTATE

SYNONYM NAME FOR FORTRAN IS OFSTAT

Appendix C. Sample Schema EMPSCHM C-33

 .

 �3 OFFICE-ZIP-�45�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFZIP

SYNONYM NAME FOR FORTRAN IS OFZIP

 .

 �4 OFFICE-ZIP-FIRST-FIVE-�45�

 PICTURE IS X(5)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFZIPF5

SYNONYM NAME FOR FORTRAN IS OFZPF5

 .

 �4 OFFICE-ZIP-LAST-FOUR-�45�

 PICTURE IS X(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFZIPL4

SYNONYM NAME FOR FORTRAN IS OFZPL4

 .

 �2 OFFICE-PHONE-�45�

 PICTURE IS 9(7)

USAGE IS DISPLAY

OCCURS 3 TIMES

SYNONYM NAME FOR ASSEMBLER IS OFFPHONE

SYNONYM NAME FOR FORTRAN IS OFPHON

 .

 �2 OFFICE-AREA-CODE-�45�

 PICTURE IS X(3)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFAREA

SYNONYM NAME FOR FORTRAN IS OFAREA

 .

 �2 SPEED-DIAL-�45�

 PICTURE IS X(3)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS OFFSPEED

SYNONYM NAME FOR FORTRAN IS OFSPED

 .

 ADD

RECORD NAME IS SKILL

�+ USES STRUCTURE OF RECORD SKILL VERSION 1��

RECORD ID IS 455

LOCATION MODE IS CALC USING (SKILL-ID-�455) DUPLICATES ARE

 NOT ALLOWED

RECORD SYNONYM NAME FOR ASSEMBLER IS SKILLA

RECORD SYNONYM NAME FOR FORTRAN IS SKILLF

C-34 CA-IDMS Logical Record Facility

 .

 �2 SKILL-ID-�455

 PICTURE IS 9(4)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS SKILID

SYNONYM NAME FOR FORTRAN IS SKLID

 .

 �2 SKILL-NAME-�455

 PICTURE IS X(12)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS SKILNAME

SYNONYM NAME FOR FORTRAN IS SKLNAME

 .

 �2 SKILL-DESCRIPTION-�455

 PICTURE IS X(6�)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS SKILDESC

SYNONYM NAME FOR FORTRAN IS SKLDSC

 .

 ADD

RECORD NAME IS STRUCTURE

�+ USES STRUCTURE OF RECORD STRUCTURE VERSION 1��

RECORD ID IS 46�

LOCATION MODE IS VIA MANAGES SET

RECORD SYNONYM NAME FOR ASSEMBLER IS STRUCTUR

RECORD SYNONYM NAME FOR FORTRAN IS STRUCT

 .

 �2 STRUCTURE-CODE-�46�

 PICTURE IS X(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS STRCODE

SYNONYM NAME FOR FORTRAN IS STCODE

 .

 88 ADMIN-�46�

USAGE IS CONDITION-NAME

VALUE IS 'A'

 .

 88 PROJECT-�46�

USAGE IS CONDITION-NAME

VALUE IS 'P1' THRU 'P9'

SYNONYM NAME FOR FORTRAN IS PROJCT

Appendix C. Sample Schema EMPSCHM C-35

 .

 �2 STRUCTURE-DATE-�46�

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS STRDATE

SYNONYM NAME FOR FORTRAN IS STDATE

 .

 �3 STRUCTURE-YEAR-�46�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS STRYEAR

SYNONYM NAME FOR FORTRAN IS STYEAR

 .

 �3 STRUCTURE-MONTH-�46�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS STRMONTH

SYNONYM NAME FOR FORTRAN IS STMNTH

 .

 �3 STRUCTURE-DAY-�46�

 PICTURE IS 9(2)

USAGE IS DISPLAY

SYNONYM NAME FOR ASSEMBLER IS STRDAY

SYNONYM NAME FOR FORTRAN IS STDAY

 .

 ADD

SET NAME IS COVERAGE-CLAIMS

ORDER IS LAST

MODE IS CHAIN LINKED TO PRIOR

OWNER IS COVERAGE

NEXT DBKEY POSITION IS 4

PRIOR DBKEY POSITION IS 5

MEMBER IS HOSPITAL-CLAIM

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

 MANDATORY AUTOMATIC

MEMBER IS NON-HOSP-CLAIM

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

 MANDATORY AUTOMATIC

MEMBER IS DENTAL-CLAIM

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

 MANDATORY AUTOMATIC

C-36 CA-IDMS Logical Record Facility

 .

 ADD

SET NAME IS DEPT-EMPLOYEE

ORDER IS SORTED

MODE IS CHAIN LINKED TO PRIOR

OWNER IS DEPARTMENT

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

MEMBER IS EMPLOYEE

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

LINKED TO OWNER

OWNER DBKEY POSITION IS 3

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (EMP-LAST-NAME-�415 EMP-FIRST-NAME-�415

)

DUPLICATES ARE LAST

 .

 ADD

SET NAME IS EMP-COVERAGE

ORDER IS FIRST

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS 7

PRIOR DBKEY POSITION IS 8

MEMBER IS COVERAGE

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

LINKED TO OWNER

OWNER DBKEY POSITION IS 3

 MANDATORY AUTOMATIC

 .

 ADD

SET NAME IS EMP-EMPOSITION

ORDER IS FIRST

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS 9

PRIOR DBKEY POSITION IS 1�

MEMBER IS EMPOSITION

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

LINKED TO OWNER

OWNER DBKEY POSITION IS 3

 MANDATORY AUTOMATIC

Appendix C. Sample Schema EMPSCHM C-37

 .

 ADD

SET NAME IS EMP-EXPERTISE

ORDER IS SORTED

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS 11

PRIOR DBKEY POSITION IS 12

MEMBER IS EXPERTISE

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

LINKED TO OWNER

OWNER DBKEY POSITION IS 3

 MANDATORY AUTOMATIC

DESCENDING KEY IS (SKILL-LEVEL-�425)

DUPLICATES ARE FIRST

 .

 ADD

SET NAME IS EMP-NAME-NDX

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 4� KEYS

OWNER IS SYSTEM

MEMBER IS EMPLOYEE

INDEX DBKEY POSITION IS 4

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (EMP-LAST-NAME-�415 EMP-FIRST-NAME-�415

) COMPRESSED

DUPLICATES ARE LAST

 .

 ADD

SET NAME IS JOB-EMPOSITION

ORDER IS NEXT

MODE IS CHAIN LINKED TO PRIOR

OWNER IS JOB

NEXT DBKEY POSITION IS 2

PRIOR DBKEY POSITION IS 3

MEMBER IS EMPOSITION

NEXT DBKEY POSITION IS 4

PRIOR DBKEY POSITION IS 5

LINKED TO OWNER

OWNER DBKEY POSITION IS 6

 OPTIONAL MANUAL

 .

 ADD

SET NAME IS JOB-TITLE-NDX

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 3� KEYS

OWNER IS SYSTEM

MEMBER IS JOB

INDEX DBKEY POSITION IS 1

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (TITLE-�44�) UNCOMPRESSED

DUPLICATES ARE NOT ALLOWED

C-38 CA-IDMS Logical Record Facility

 .

 ADD

SET NAME IS MANAGES

ORDER IS NEXT

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS 13

PRIOR DBKEY POSITION IS 14

MEMBER IS STRUCTURE

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

LINKED TO OWNER

OWNER DBKEY POSITION IS 3

 MANDATORY AUTOMATIC

 .

 ADD

SET NAME IS OFFICE-EMPLOYEE

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 3� KEYS

OWNER IS OFFICE

NEXT DBKEY POSITION IS 1

PRIOR DBKEY POSITION IS 2

MEMBER IS EMPLOYEE

INDEX DBKEY POSITION IS 5

LINKED TO OWNER

OWNER DBKEY POSITION IS 6

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (EMP-LAST-NAME-�415 EMP-FIRST-NAME-�415

) COMPRESSED

DUPLICATES ARE LAST

 .

 ADD

SET NAME IS REPORTS-TO

ORDER IS NEXT

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS 15

PRIOR DBKEY POSITION IS 16

MEMBER IS STRUCTURE

NEXT DBKEY POSITION IS 4

PRIOR DBKEY POSITION IS 5

LINKED TO OWNER

OWNER DBKEY POSITION IS 6

 OPTIONAL MANUAL

Appendix C. Sample Schema EMPSCHM C-39

 .

 ADD

SET NAME IS SKILL-EXPERTISE

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 3� KEYS

OWNER IS SKILL

NEXT DBKEY POSITION IS 2

PRIOR DBKEY POSITION IS 3

MEMBER IS EXPERTISE

INDEX DBKEY POSITION IS 4

LINKED TO OWNER

OWNER DBKEY POSITION IS 5

 MANDATORY AUTOMATIC

DESCENDING KEY IS (SKILL-LEVEL-�425) UNCOMPRESSED

DUPLICATES ARE FIRST

 .

 ADD

SET NAME IS SKILL-NAME-NDX

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 3� KEYS

OWNER IS SYSTEM

MEMBER IS SKILL

INDEX DBKEY POSITION IS 1

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (SKILL-NAME-�455) UNCOMPRESSED

DUPLICATES ARE NOT ALLOWED

 .

C-40 CA-IDMS Logical Record Facility

 Index

A
ADD AREA DDL statement 4-6
ADD LOGICAL RECORD DDL statement 4-8, 4-9,

4-10, 4-11
ADD PATH-GROUP DDL statement 5-4
ADD RECORD DDL statement 4-6, 4-9
ADD SET DDL statement 4-6
ADD SUBSCHEMA DDL statement 4-4, 4-5
application program

communication with LRF 2-7
data access requirements 3-4—3-5
selection criteria 3-7

C
CA-ADS

database control commands 9-3—9-4
database retrieval commands 7-3—7-5
database update commands 8-3
with LRF 11-19, 17-5, 19-25

CA-Culprit 17-3
CA-IDMS/DC mapping facility 17-3, 17-6
CA-OLQ 3-13, 17-3, 17-4
CALC retrieval 3-13, 7-14
COMMENTS clause 14-4—14-6
complete logical record 3-10, 11-19—11-27
COMPUTE command 7-7, 12-3—12-9
CONNECT command 8-3, 8-13—8-15
currency 15-3—15-10

D
data

access requirements 3-4—3-5
integrity rules 16-3—16-5
passing between the program and the path 7-8—7-13
returning to the program 3-10
security requirements 3-6—3-7

database
areas 4-6
navigation 3-12—3-13
records 4-6, 4-8, 4-9
sets 4-6

database administrator
path status 19-25

DBA
See database administrator

DBA-defined path status 11-18, 11-19
DBMS communication with LRF 2-8
DDL statements

ADD AREA 4-6
ADD LOGICAL RECORD 4-8, 4-9, 4-10, 4-11
ADD PATH-GROUP 5-4
ADD RECORD 4-6, 4-9
ADD SET 4-6
ADD SUBSCHEMA 4-4, 4-5

deadlocks 11-19, 19-25
direct retrieval 3-13, 7-24—7-25
DISCONNECT command 8-3, 8-16—8-18

E
ELEMENT selector 3-13, 6-4, 6-9
ELEMENTS ARE clause 4-6
ERASE (LRF) 19-16—19-17
ERASE command 8-3, 8-10—8-12
ERASE logical-record request 1-8
ERASE path 8-10, 8-16, 8-17

examples 8-11—8-12, 8-17
ERASE path group 3-7, 5-3
EVALUATE command 7-7, 10-13—10-15
examples

CALC retrieval 7-8, 7-9—7-10, 7-11—7-12—7-13
COMPUTE command 12-3—12-9
CONNECT command 8-13—8-15
currency options 15-7—15-8
direct retrieval 7-24
DISCONNECT command 8-16—8-18
ELEMENT selector 6-9
ERASE command 8-11—8-12
EVALUATE command 10-13—10-15
FIELDNAME selector 6-8
FIELDNAME-EQ selector 6-6—6-7
FIND command 7-6
IF [NOT] EMPTY command 9-5—9-6
IF [NOT] MEMBER command 9-7—9-8
indexed retrieval 7-15, 7-16—7-17, 7-19—7-20,

7-21, 7-22—7-23
integrity rules 16-3—16-5
KEEP command 9-9—9-10
KEYWORD selector 6-5
MODIFY command 8-8—8-9
multiple SELECT clauses 6-13
multiple selectors 6-12
null SELECT clause 6-10

Index X-1

examples (continued)
OF LR clause 7-11—7-12
OF REQUEST clause 7-9—7-10
ON...DO/END clause 11-9—11-10
ON...NEXT clause 11-7—11-8
path iteration 11-12—11-15, 11-16—11-17
path WHERE clause 10-8—10-9
program WHERE clause 10-5—10-6
returning a complete logical

record 11-23—11-25—11-27
returning a partial logical record 11-21—11-23
role names 13-3—13-8, 15-9—15-10
SELECT USING INDEX 6-11
STORE command 8-4—8-6—8-7
WHERE clause interactions 10-10—10-12

F
FIELDNAME selector 3-13, 6-4, 6-8, 7-18
FIELDNAME-EQ selector 3-13, 6-4, 6-6—6-7, 8-6
FIND/OBTAIN commands 7-3

CALC retrieval 3-13, 7-14
comparison with CA-ADS retrieval

commands 7-3—7-5
direct retrieval 7-24—7-25
FINDs versus OBTAINs 3-12, 7-6—7-7
indexed retrieval 3-13, 7-15—7-23
unique options for 7-3

FIND/OBTAIN CURRENT command 7-3
FIND/OBTAIN EACH USING INDEX command 7-3,

7-15—7-20—7-21
FIND/OBTAIN OWNER command 7-3
FIND/OBTAIN WHERE CALCKEY command 7-3,

7-14
FIND/OBTAIN WHERE DBKEY command 7-3
FIND/OBTAIN WITHIN SET WHERE SORTKEY

command 7-3, 7-15, 7-21—7-22
FIND/OBTAIN WITHIN SET/AREA command 7-3,

7-15, 7-22—7-23, 9-5

I
IDMS communications block 2-7
IDMS-DC communications block 2-7
IDMSRPTS utility

LRDEFS 19-4—19-8
LRPATH 19-8—19-11

IF [NOT] EMPTY command 9-3, 9-5—9-6
IF [NOT] MEMBER command 9-3, 9-7—9-8
indexed retrieval 3-13, 7-15—7-21, 7-23

integrity rules
application-dependent 16-3
examples 16-3—16-5
referential 16-3

iterable command 11-11

K
KEEP command 9-3, 9-9—9-10
key value

passing between the program and the path 7-8—7-13
specifying as a literal 7-8
specifying as an arithmetic expression 7-12—7-13
specifying with the OF LR clause 7-11—7-12
specifying with the OF REQUEST clause 7-8—7-10

keyed retrieval 7-8—7-25
KEYWORD selector 3-13, 6-4, 6-5, 8-4
keywords (LRF) 19-21

L
logical record

comments 4-11—4-12, 14-3—14-7
complete 3-10, 11-19—11-27
customizing 3-11
defining 4-8—4-12
definition of 1-5
design considerations 3-11—3-14
elements 4-8—4-10
initialization options 4-10—4-11
naming 4-8
partial 3-10, 11-19—11-27
selection criteria 3-8, 10-3

Logical Record Facility
at runtime 1-8
benefits 1-3—1-4
communication 2-7—2-8
currency 15-3—15-10
ERASE 19-16—19-17
introduction to 1-3—1-8
keywords 19-21
LRF documentation 19-4—19-11
MODIFY 19-13—19-14
OBTAIN 19-12—19-13
ON clause 19-25
partial logical records 19-26
path status 19-24—19-28
path status examples 19-26—19-28
processing 2-3—2-8
programming 19-3—19-28
role 19-8

X-2 CA-IDMS Logical Record Facility

Logical Record Facility (continued)
role of DBA 1-5—1-7
STORE 19-15—19-16
WHERE clause 19-18—19-23

logical-record requests
ERASE 1-8
MODIFY 1-8
OBTAIN 1-8
STORE 1-8

LR usage mode 3-6, 3-9, 4-4
LR-ERROR path status 2-7, 4-10, 11-18
LR-FOUND path status 11-18
LR-NOT-FOUND path status 4-10, 11-18
LRACT report 14-14
LRC block 2-7
LRDEFS 19-4—19-8
LRDEFS report 14-7—14-11
LRF

See also Logical Record Facility
with CA-ADS and ADS/Batch 17-5
with CA-ADS and CA-ADS/Batch 17-5
with CA-IDMS/DC Mapping Facility 17-6
with CA-OLQ 17-4

LRF documentation 19-4—19-11
LRDEFS 19-4—19-8
LRPATH 19-8—19-11

LRPATH 19-8—19-11
LRPATH report 14-12—14-13

M
MIXED usage mode 3-9, 3-13, 4-4
MODIFY (LRF) 19-13—19-14
MODIFY command 8-3, 8-8—8-9
MODIFY logical-record request 1-8
MODIFY path 8-8, 8-13, 8-16

examples 8-8—8-9, 8-14—8-15, 8-17—8-18
MODIFY path group 3-7, 5-3
multiple selectors 6-12

N
navigational DML commands 7-3, 8-3
NO RESET currency option 3-13, 4-5, 15-7
null SELECT clause 3-13, 8-4

O
OBTAIN (LRF) 19-12—19-13
OBTAIN logical-record request 1-8

OBTAIN path 4-5, 8-6, 8-8, 8-10
OBTAIN path group 3-7, 5-3
OF LR clause (path) 7-11—7-12
OF LR clause (program) 7-10
OF REQUEST clause 7-8—7-10
ON clause (LRF) 19-25
ON clause (path) 11-4—11-6
ON clause (program) 1-8, 9-5
ON...DO/END clause 11-4, 11-9—11-10
ON...ITERATE clause 11-4, 11-11
ON...NEXT clause 11-4, 11-7—11-8
ON...RETURN clause 11-4, 11-19

P
partial logical record 3-10, 11-19—11-27
partial logical records 19-26
partial path

See partial logical records
path

branching 11-9—11-10
customizing 3-11—3-12
database control commands 9-3—9-10
database retrieval commands 7-3—7-25
database update commands 8-3—8-18
definition of 1-6
iteration 3-13, 11-11—11-17
retrieval 2-5, 5-3
security 3-7
selection criteria 3-7, 3-8
sequencing in a path group 6-14—6-15
status 11-18—11-19
termination 11-18—11-27
update 2-6, 5-3, 8-3

path DML statements
COMPUTE 7-7, 12-3—12-9
CONNECT 8-3, 8-13—8-15
controlling 11-3
definition of 1-6
DISCONNECT 8-3, 8-16—8-18
ERASE 8-3, 8-10—8-12
EVALUATE 7-7, 10-13—10-15
IF [NOT] EMPTY 9-3, 9-5—9-6
IF [NOT] MEMBER 9-3, 9-7—9-8
KEEP 9-3, 9-9—9-10
MODIFY 8-3, 8-8—8-9
STORE 8-3, 8-4—8-7

path group
defining 5-3—5-5
definition of 1-6
ERASE 3-7, 5-3

Index X-3

path group (continued)
locating 5-4—5-5
MODIFY 3-7, 5-3
OBTAIN 3-7, 5-3
security 3-6—3-7
STORE 3-7, 5-3

path iteration
examples 11-12—11-15, 11-16—11-17
logic 11-11—11-12
triggering from the path 11-15—11-17
triggering from the program 11-12—11-15

path status 19-24—19-28
DBA-defined 19-25
examples 19-26—19-28
system-defined 19-24—19-25

path statuses
LR-ERROR 2-7, 4-10, 11-18
LR-FOUND 11-18
LR-NOT-FOUND 4-10, 11-18

programming techniques

R
RESET currency option 3-13, 4-5, 15-7
retrieval path 2-5, 5-3
role names 4-9, 13-3—13-8

currency 15-9—15-10

S
sample employee database 3-5
sample schema (EMPSCHM) C-3—C-40
sample subschemas

EMPLR35 4-4, 4-5, 4-6, 4-8, 4-9, 4-10, 4-11,
A-3—A-8

EMPLR40 B-3—B-9
SELECT clause 3-13

as path delimiter 6-3
associating with an index 7-15—7-17
multiple 6-13
null 3-13, 6-10, 8-4
sequencing 3-14, 6-14—6-15
USING INDEX 6-11

selectors 6-3—6-15
considerations for 3-13—3-14
ELEMENT 3-13, 6-4, 6-9
FIELDNAME 3-13, 6-4, 6-8, 7-18
FIELDNAME-EQ 3-13, 6-4, 6-6—6-7, 8-6
KEYWORD 3-13, 6-4, 6-5, 8-4
multiple 6-12
sequencing 6-14—6-15

sort key
complete 7-18—7-20, 7-21
concatenated 7-18—7-20
partial (generic) 7-18—7-20
specification of 7-17—7-18, 7-21

STORE (LRF) 19-15—19-16
STORE command 8-3, 8-4—8-7
STORE logical-record request 1-8
STORE path 8-6, 8-13

examples 8-6—8-7, 8-14
with currency considerations 8-6—8-7
with no currency considerations 8-4—8-6

STORE path group 3-7, 5-3
subschema

currency options 3-12, 4-5, 15-7—15-8
database components 4-6—4-7
debugging 18-3—18-4
defining 4-3—4-12
design considerations 3-3—3-14
documenting 14-3—14-14
sample (EMPLR35) A-3—A-8
sample (EMPLR40) B-3—B-9
samples 4-4, 4-5, 4-6, 4-8, 4-9, 4-10, 4-11
security 3-6
usage modes 3-9, 3-13, 4-4
view 4-6, 4-8

SUBSCHEMA-CTRL 2-8
SUBSCHEMA-LR-CTRL 2-7
system-defined path status 11-18—11-19

U
update path 2-6, 5-3, 8-3
updating the database

erasing logical records 19-16—19-17, 19-28
modifying logical records 19-13—19-14, 19-27
storing logical records 19-15—19-16, 19-28

V
VIEW ID 4-6

W
WHERE clause 19-18—19-23

coding techniques 19-21—19-23
comparisons 19-18—19-21
keywords 19-18—19-21
path restrictions 19-21—19-23

WHERE clause (path and program
interactions) 10-9—10-12

X-4 CA-IDMS Logical Record Facility

WHERE clause (path) 3-7, 10-7—10-9
WHERE clause (program) 1-8, 3-7, 3-8, 8-6,

10-4—10-6
work records 4-9

Index X-5

	CA-IDMS Logical Record Facility
	Contents
	How to use this manual
	What this manual is about
	Who should use this manual
	Special presentations
	Related documentation

	Chapter 1. Introduction to the Logical Record Facility
	1.1 Introduction
	1.2 The DBA's role
	1.3 How the programmer uses LRF

	Chapter 2. How the Logical Record Facility Works
	2.1 Overview of Logical Record Facility processing
	2.2 Processing retrieval paths
	2.3 Processing update paths
	2.4 Communication between the program and LRF
	2.5 Communication between LRF and the DBMS

	Chapter 3. Preliminary Analysis and Design
	3.1 Introduction
	3.2 Identifying data- access requirements
	3.3 Identifying data- security requirements
	3.3.1 Securing data at the subschema level
	3.3.2 Securing data at the path- group level
	3.3.3 Securing data at the path level

	3.4 Controlling the selection of logical- record occurrences
	3.5 Determining subschema usage modes
	3.6 Controlling how LRF returns data
	3.7 Logical- record design suggestions
	3.7.1 Customizing a logical record
	3.7.2 Customizing a logical- record path
	3.7.3 Navigating the database efficiently
	3.7.4 Defining path selectors carefully

	Chapter 4. Starting to Define the Subschema
	4.1 Introduction
	4.2 Specifying a subschema usage mode
	4.3 Specifying a subschema currency option
	4.4 Including records, sets, and areas
	4.5 Defining logical records
	4.5.1 Step 1: Name the logical record
	4.5.2 Step 2: Name the logical- record elements
	4.5.3 Step 3: Specify initialization options for program variable storage
	4.5.4 Step 4: Document the logical record

	Chapter 5. Defining Path Groups
	5.1 What is a path group
	5.2 Creating the definition

	Chapter 6. Specifying Path Selectors
	6.1 What is a path selector?
	6.2 Using the KEYWORD selector
	6.2.1 Examples

	6.3 Using the FIELDNAME- EQ selector
	6.3.1 Examples

	6.4 Using the FIELDNAME selector
	6.4.1 Examples

	6.5 Using the ELEMENT selector
	6.5.1 Examples

	6.6 Using a null SELECT clause
	6.6.1 Examples

	6.7 Using a SELECT clause that names an index
	6.7.1 Example

	6.8 Using multiple selectors in a single SELECT clause
	6.8.1 Examples

	6.9 Using multiple SELECT clauses for one path
	6.9.1 Examples

	6.10 Determining path order

	Chapter 7. Coding Path Database Retrieval Commands
	7.1 Introduction
	7.2 Using FINDs and OBTAINs
	7.3 Passing key values
	7.3.1 Specifying the key value as a literal
	7.3.2 Specifying the key value with the OF REQUEST clause
	7.3.3 Examples
	7.3.4 Specifying the key value with the path OF LR clause
	7.3.5 Examples
	7.3.6 Specifying the key value as an arithmetic expression
	7.3.7 Example

	7.4 Retrieving CALC records
	7.5 Retrieving indexed records
	7.5.1 Using the FIND/ OBTAIN EACH USING INDEX command
	7.5.1.1 Associating an index with a SELECT clause
	7.5.1.2 Specifying the sort key
	7.5.1.3 Passing sort key values

	7.5.2 Index processing considerations
	7.5.3 Using the FIND/ OBTAIN WITHIN SET WHERE SORTKEY command
	7.5.4 Using the FIND/ OBTAIN WITHIN SET command

	7.6 Retrieving records directly

	Chapter 8. Coding Path Database Update Commands
	8.1 Introduction
	8.2 Storing database records
	8.2.1 When you don't have to establish currency
	8.2.2 When you must establish currency

	8.3 Modifying database records
	8.3.1 Example

	8.4 Erasing database records
	8.4.1 Examples

	8.5 Connecting database records
	8.5.1 Examples

	8.6 Disconnecting database records
	8.6.1 Examples

	Chapter 9. Coding Path Database Control Commands
	9.1 Introduction
	9.2 Evaluating empty- set conditions
	9.2.1 Example

	9.3 Evaluating set- membership status
	9.3.1 Example

	9.4 Locking a database record
	9.4.1 Example

	Chapter 10. Specifying Selection Criteria for Logical Records
	10.1 Introduction
	10.2 Using a WHERE clause
	10.2.1 Coding a program WHERE clause
	10.2.2 Coding a path WHERE clause
	10.2.3 Program and path WHERE clause interactions

	10.3 Using the EVALUATE command

	Chapter 11. Controlling Path Execution
	11.1 Introduction
	11.2 Using the ON clause
	11.3 Executing the next path- DML command
	11.4 Branching within a path
	11.5 Iterating a path
	11.5.1 Path iteration logic
	11.5.2 Triggering iteration from the program
	11.5.3 Triggering iteration from the path

	11.6 Returning control to the program
	11.6.1 Using system- defined path statuses
	11.6.2 Using DBA- defined path statuses
	11.6.3 Partial and complete logical records

	Chapter 12. Manipulating Logical- Record Data
	12.1 The COMPUTE command
	12.1.1 Examples

	Chapter 13. Using Role Names
	13.1 Role names
	13.1.1 Examples

	Chapter 14. Documenting the Subschema
	14.1 Introduction
	14.2 Using the COMMENTS clause
	14.3 Running the LRDEFS report
	14.4 Running the LRPATH report
	14.5 Running the LRACT report

	Chapter 15. Currency Considerations
	15.1 Introduction
	15.2 How LRF uses currency
	15.3 Choosing a currency option
	15.3.1 Example

	15.4 Currency considerations for role names
	15.4.1 Example

	Chapter 16. Implementing Data Integrity Rules
	16.1 Data integrity rules
	16.1.1 Examples

	Chapter 17. Using LRF with Other Facilities
	17.1 Introduction
	17.2 Using LRF with CA- OLQ
	17.3 Using LRF with CA- ADS and CA- ADS/ Batch
	17.4 Using LRF with the CA- IDMS/ DC Mapping Facility

	Chapter 18. Debugging Subschema Code
	18.1 Debugging and testing

	Chapter 19. LRF Programming Techniques
	19.1 Introduction
	19.2 Using LRF documentation
	19.2.1 The LRDEFS report
	19.2.2 The LRPATH report

	19.3 Accessing logical records
	19.3.1 Retrieving logical records
	19.3.2 Modifying logical records
	19.3.3 Storing logical records
	19.3.4 Erasing logical records
	19.3.5 Using the WHERE clause
	19.3.5.1 Comparisons
	19.3.5.2 Keywords
	19.3.5.3 Coding techniques and path restrictions

	19.3.6 Examples

	19.4 Testing for path status
	19.4.1 System- defined path statuses
	19.4.2 DBA- defined path statuses
	19.4.3 The ON clause
	19.4.4 Partial logical records
	19.4.5 Path status examples

	Appendix A. Sample Subschema EMPLR35
	Appendix B. Sample Subschema EMPLR40
	Appendix C. Sample Schema EMPSCHM
	Index
	A
	C
	D
	E
	F
	I
	K
	L
	M
	N
	O
	P
	R
	S
	U
	V
	W

